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-34
51 a=to i _SEXI0TJS 156 o) 3.97x1070 m
p mu 1.67x107 kg

—34
5-3 i:ﬁ.:i:M__]s@ m/s)=1.79%x10"% m
p mv 74 kg

5-5 (a) Azﬁmp=£:E=1240eVnm=1z4ev
P A Je (10nm)o) ¢

K=E-mc? =[pzc2 +(mc7‘)2]1/2 -mc?,

we must use the relativistic expression for K, when pc = mc?. Here

2

pe =124 eV <<mc® =0.511 MeV, so we can use the classical expression for K, K = ;— |

m

2 2.2 2
PP CREY) gy
2m  2mc®  2(0.511 MeV)

24
(b) Electrons with A=010 nm p= % = M asin (a). As pc << me? =0.511 MeV , use
2 2 2
K = p— = pZCZ = (12 400) (e\!) =150 EV .
2m (2)(0.511x10° V)
3
(c) Electrons with 1=10 fm=10x10" m, p= %=w. As
c

pe>>me” = 0.511 MeV , use

1/2

K=[p?c® +(mc?)’]|" —mc? = pe—mc? =1240 MeV - 0511 MeV =1239 MeV .

33 ‘
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For alphas with mc?® =3 726 MeV:

|
|
2 |
(a) pstillis 146V pc <<3726 MeV , we use K=£— |
c 2m |
2.2 2
k=L -2V ) 06x10 ev. |
2me®  (2)(3 726 MeV) ‘
A
(b)  Foralphas with =010 nm, p= DY s pe<<mc® =3726 MeV, |
[
2 2.2 2
g=P__pe _ UZ40eV) _;pn6ev.

T 2m 2mc® (2)(3726 MeV)

- 1.24x 10 MeV

(© and pe=1240 MeV ~ mc® =3 726 MeV . We use L
|

K:[pzcz +(mcz)2]lf g =[(1240 MeV)? +(3 726 MeV)Z]”Z—s?ze MeV | ‘
=201 MeV. ‘

5-7 A 10 MeV proton has K =10 MeV << 2mc?* = 1877 MeV so we can use the classical expression
p=(2mK)Y2. (See Problem 5-2)

L 25 = 1240 MeV fm =905 fm=9.05x107" m
P [(2)(938.3 MeV)(10 MeV)I"*  [(2)(938.3)(10)(MeV)?]
mvz 12
59 m=0.20 kg: mgh= rv=(2gh)

p=mv=m(2gh)"* = (0.20)[2(9.80)(50)]¥% = 6.261 kg m/s

=34 ’ =
b SERIT R et m
p 6261 kg-m/s

511 (a) In this problem, the electron must be treated relativistically because we must use
relativity when pc = mc?. (See problem 5-5). the momentum of the electron is

_h_6626x107*]-s

s T =6.626 X102 kg -m/s

and pc =124 MeV >>mc? =0.511 MeV. The energy of the electron is

E:(pzcz-&-mzcﬂlﬂ
:[(6.62.6><10"20 kg-m/s)z(?:xl(]s m/s)z+(0.511><106 eV)2(1.602 x107 J/ev)z]lf2

=199x107™" J=1.24x10°% eV

so that K =E—mc? =124 MeV .

N
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(b) The kinetic energy is too large to expect that the electron could be confined to a
region the size of the nucleus.

513 A canceling wave will be produced when the path length difference between the surface
reflection and the reflection from the nth plane below the surface equals some whole number

of wavelengths plus —Zi As the path length difference between a surface reflection and a

reflection from plane # is given by (1)(1.011), we find that a reflection from the 5% plane has
a path difference of 50.54 with the surface reflection, and consequently cancels the surface
reflection. Essentially all waves reflected at & will cancel as the wave reflected from the
second plane will be cancelled by a reflection from the 51* plane and so on.

Pz

2m

2
MeUg -

5-15  For a free, non-relativistic electron E= . As the wavenumber and angular

e

frequency of the electron’s de Broglie wave are given by p =ik and E = h, substituting these

Bk do _hk _p
So v, = ——=1y.
2m, o m, m,

results gives the dispersion relation @=

517  E*=p*c* +(m, Cz)l
[pc +mc ] .As E=hw and p=rtk

hw=[ﬁzk2c2 +(mec2) ]1/2 or

242 1/2
a)(k)zlkzcz+(m;lc2 ) ]

126 4 {[m_”,

g =
Pk k hk

22TV 2
Vg =d£’ =l[k?‘c2 +(—ni } 2hc? = s 2 11/2
dkly, 2 A [kzcz +(mecz/h] ]

[kzc +(m cz/h)zlm‘

Uyl = p >{[}c2c2+(nf1ec?“/r*i)2]1"2}=r:2

Therefore, v, <c if v, >cC.

m_uz pz pz
519 K= =1 (1x10% eV)(1.6x107Y J/eV)= =p=2312x10"% kg -m/s,
2 2m ( X J/eV) 2(167x1077 kg) d B/

Ap=0.05p=1160x10""" kg m/s and AxAp :%. Thus

B 6.63x10™ ] s
(1.16 %107 kg -m/s)(47)

=456%x10™ m
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5-21

5-23

5-25

CHAPTER 5 MATTER WAVES

Note that non-relativistic treatment has been used, which is justified because the kinetic

energy is only

(a)

(a)

(b)

(L6x107")x100%
1.50%x107%°

=0.11% of the rest energy.

The woman tries to hold a pellet within some horizontal region Ax; and directly
above the spot on the floor. The uncertainty principle requires her to give a pellet
h ;
some x velocity at least as large as Av, = e When the pellet hits the floor at time
m

i

t, the total miss distance is Ax,) = Ax; +Av,f = Ax, +(2 hAx J ot . The minimum
i V

value of the function Ax,,, occurs for d;‘?xtota)l) _ f

12 1/4
We find Ax; [ i ] (E] 5
2m g

For H=20m, m=050 g, At =5.2x107° m

ApAx = mAvAx = —Z—

h 2x]-s
4;'rmAx 475(2 kg)(1 m)

=0.25 m/s

The duck might move by (0.25 m/s)(5 s}=1.25 m. With original position uncertainty
of 1m, we can think of Ax growing to 1 m+1.25 m=2.25 m.

To find the energy width of the y -ray use AEA! 2% or

B 6.58x107% eV s

> >t - >320%107° eV
24t (2)(010x107 s)

As the intrinsic energy width of ~+3x 107 eV is so much less than the experimental
resolution of 45 eV, the intrinsic width can’t be measured using this method.
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5-29

5-31
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For a single slit with width a, minima are given by sin@= ﬁ where n=1, 2, 3, ... and
a

sinﬁ:tan9=£,x—1=£andx—zzgiﬁi_—x—lzior |
L' L a L & L a i
Azamzsﬂxz.l O
L 20 cm
2 2 2 1.24x10% eV- &)
A ) L siev

Eey —= z 22 2
2m  2mA? 2mc*A 2(511x10° eV)(0.525 A)

With one slit open P, =|¥,|* or P, = |¥,|*. With both slits open, P=|%¥; + ¥, At a maximum,
the wavefunctions are in phase so

=(] +1'{'21)2-

Pmax

At a minimum, the wavefunctions are out of phase and

Pnﬂn:()\?li_t‘yzl)z'

Pmax

=(|‘Pll+|\}’2l)2 - (Si‘le‘*PPZDZ =i=iﬁ_:2‘25
Pun  (T]-M2)?  (G7|-¥,)* 4* 16

AyAp, ~h  Ap, = Zhg; From the diagram, because the momentum triangle and space triangle

. Ap, 05cm
are similar, = o
Px x
L _(05cmp, (05 cm)p,Ay (0.5x1072 m)(0.001 kg)(100 mys)(2x107 m)
Ap, h 1.05x107 J-s
=95x10% m

Once again we see that the uncertainty relation has no observable consequences for
macroscopic systems.
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5-33 From the uncertainty principle, AEAt ~ 7 Amic?At = k. Therefore,

Am h h 6.63x107* J.5 8
e - = = = v 75 =5.62x107",
m  2mciAtm  2mAIE.  27(8.7x107 s)135x10° eV)(16x1077 J/eV)
T / A YT ek ik A gt ~0 (K*—( 2k, +ix/ o))
5-35 a (t)=—= [all)e™dk=——= [ ¢ Ch) loge - =@ [, g dk.
@ f N2m L & V2 _J;. T L

Now complete the square in order to get the integral into the standard form

L 2

[ e dz:

o (2Kt e?)h) _ va? (kg +ix/26%)" o (k=(koix/ 20%))"

@)= A oG o (kotis/20) *j’“e_aZ(k_(ku+sx/za2))2 K

—
27 s
A —x*aa? ikyx T et
=—c¢ gt e dz
27 Z=L
ix H s 2 A I
where z=k —(k +-——J .Since | e %% dz="—, flx)=——¢"" /42* Jkox The real
o+ ggz ) Sinee | g
part of f(x), Re f(x) is Re f(x) = —AE("ZMZ coskyx and is a gaussian envelope
o
multiplying a harmonic wave with wave number k. A plot of Re f(x) is shown
below:
Re f(x)
& A
2 2
e /4cx
| "—‘—'/X—_‘{a 2
Al N\ o,
—_‘.‘\-/‘A/ v \/ "\J‘—‘_
coskgx B S o
. A g ~(2A1)% . g
Comparing e to Ae implies Ar=er.

o2

(©) By same reasoning because & = L Ak = i Finally AxAk = o{i) = l
| 4Ak 20 200) 2

5-37  We find the speed of each electron from energy conservation in the firing process:

0=Kf+uf=%maz—ev

7 [2(16x107° )45V
v:JZEV:\j ( X ) _3.98x10° m/s
m N

9.11x107! kg
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The time of flight is At =£=__#0'_28?_
v 3.98x10° m/s

-19
28 cm apart is I-:%:i— ik s =2.27x1072 A,

At 7.04x107% s |

=704%107® 5. The current when electrons are i
|
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Quantum Mechanics in One

Dimension
6-1 (a) Not acceptable - diverges as x — .
() Acceptable.
(c) Acceptable.
(d) Not acceptable — not a single-valued function.
(e) Not acceptable ~ the wave is discontinuous (as is the slope).
63  (a) Asin(ziix] = Asin(5x10"x) so (3&’5) =5x%10"" m™, A= 5:1’(’) s
B  po BSOS oo 10 kg mys
| A 126x10m
2
. (c) K=F— m=911x10"" kg
2m
2
5.26x 107 kg mys
K=( gmm/ ) =152x1077 ]
(2x9.11x107 kg)
-17
- 12XT0 T _g5ev
16x107 J/eV
‘ 6-5 (a) Solving the Schrédinger equation for U with E=0 gives

u{ﬁ}(?ﬁzﬁ).
2m) y

wii 2 2 2
If w=Ae™ /” then f;ﬁj{"_ = (4Ax3 —6AxI? )(%()e_xzm = (—ﬁ——Ii—

x? omI? \ 12

41

=1.26x107" m.

o)
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6-7

6-9

6-11

CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

—3h%

(b) LI(x) is a parabola centered at x =0 with U(0) = 2
b

<0:

.Ilu

\/I 32 x
___________ mLZ

Since the particle is confined to the box, Ax can be no larger than L, the box length. With
252

n =0, the particle energy E, = g is also zero. Since the energy is all kinetic, this implies

mL*
(pi) =0.But (p,) =0 is expected for a particle that spends equal time moving left as right,
giving Ap, =(p2)~(p,)> =0. Thus, for this case Ap,Ax =0, in violation of the uncertainty
principle.

22 2
By =l o KB By e
8mL

" gmI2’
(1240 eV nm/c)®

8(938.28x10° €V/c?)(107® nm)’
_ hc _ 1240 eV nm
"~ AE 614x10° eV
This is the gamma ray region of the electromagnetic spectrum.

AE=(3) =6.14 MeV

=2.02x107* nm

In the present case, the box is displaced from (0, L) by % Accordingly, we may obtain the

wavefunctions by replacing x with x —% in the wavefunctions of Equation 6.18. Using

e Sl ()

we get for —££x££
2 2

eAL 5
qlx)= (E] cos(%) ; Px) = (f] cosz(i—x)

Walx)= [%)Uz sm(?}; Bln= @-) sinz( z;; ")

Wslx)= [%)L’Z cos(gﬂz—xj ; Py(x)= [%) cosz(?ﬂi—x)




613 (a)

(b)

(©)

615  (a)

I
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Proton in a box of width L=0.200 nm=2x10"% m

2 6.626x107% J-s)*
L= h = ( Js) -=822x107% ]
B, L 8(167x107¥ kg)(2x107 m)
22

= BB ) men ew

1.60x107" J/ev
Electron in the same box:
2 6.626 X107 J.5)"
B e ( J:5) -=1506x107* J=9.40 eV

8m > §(9.11x10" kg)(2x107™° m)

The electron has a much higher energy because it is much less massive.

u =( ? ][_1 L1t (Wl . l) . (_1)] TP _ (T
2 3

dregd 2 47 gyd d

2h% W

K=2FE; = %
17 8mx9d?:  36md®

2 2
E=U+K andd—E:0 for a minimum (+7/32)e € - 5 5=
dd d 18md
2 2
T SR
(7)(18ke*m) 42mike
(6.63%107% J.s)”

- =05x107" m=0.050 nm
(42)(911x10™ kg)(9%10° N-m* -C2)(1.6x107" of

Since the lithium spacing is 2, where Na® =V and the density is %ﬂi where m is the

mass of one atom, we get

5 1 13
a:(Vm) :( m ] :[1.66x10'27ng——L—J m=28x10" m

Nm density 530 kg/m”
=0.28 nm
(2.8 times larger than 24)

The wavefunctions and probability densities are the same as those shown in the two
lower curves in Figure 6.16 of the text.

354 35A
P= [ |yfdx= 2 1 smz(ﬂ)dx
154 10 A 154 10

1[35 10 . (ﬁxﬂ“
—|—=———sin| —
502 4m . B J1s

|
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In the above result we used J' sin® axdx =32£—4isin(2ax) . Therefore,
a

35
H= 'l“[x - Sﬁl(ﬂﬂ = —}—{3.5 -2 Sin[—ﬁ(s's)] -15+ Esin[ E(I'B)J}
5 % 5

T 5 /s 10 b4

. i[z.o 2 0B sin0.77r):| = 112.00+0.0]=0.200
0“7 10

1% Z(er) 1|:x 5 T-s 1 [ 5 ]3-5
Py== | sin?| ZE Jax =122 gin0.4 =—{ x——sin(0.47
(c)_ ) 51_‘[55111 e 4ﬂ_sm( 7 x) W szm( x) ¥

= %.—{2.0 +(0.798){sin[0.47(1.5)] - sin[0.47(3.5)]}} = 0.351

n2h?

d Using E=
@ B

we find E; =0.377 eV and E, =1.51 eV.

LT P R %
The allowed energies for this system are given by Equation 6.17, or E, =————=——.
2mlL 8mlL

Using E, =107 J, m=10"% kg, L=10"2 m and solving for n gives
g Ly g g gt

8(10° kg)(102 m)*(10= P
nz{ ( 8 - ) )} =4.27 x10%,
6.63x107 -5

The excitation energy is AE=E,,; —E,, or

2 2
AE=-"_{n+1)? —nz}:[ K J{2n+1}= Eﬂ(zn+1)ng,{ forn>>1.
8mL® ’

8ml? n?
(1072
Thus, AE =;—2)£—10—g-2-=4.69><1o-32 F
A X
n=4
w(x)
\‘-—
_ 0 i
i /\ /\/-\ /\
/ AN L \I/_ 1 \
0 L

Note that the # = 4 wavefunction has three nodes and is antisymmetric about the midpoint of
the well.
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6-25

6-29
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Inside the well, the particle is free and the Schrédinger waveform is trigonometric with

2mE

12
wavenumber k= (—m—zw) :
h

w(x)=Asinkx+Bcoskx 0<x<L.

The infinite wall at x =0 requires y(0)=B=0.Beyond x=L, U(x)=U and the Schr6dinger

2
equation Z—"Zy = [i—’:){u - E}w(x), which has exponential solutions for E <l
X

w(x)=Ce " + D%, x>L

Zm(U —E)

vz
where az[ -1 ] . To keep w bounded at x = we must take D=0. At x=L,

continuity of ¥ and %f— demands
x

AsinkL = Ce %L
kA cos kL = —aCe %"

Dividing one by the other gives an equation for the allowed particle energies: kcotkL =-a.

The dependence on E (or k) is made more explicit by noting that kK +o? = Zmzu , which
R

1/2
allows the energy condition to be written kcotklL = —H z::zu ) - kz] . Multiplying by L,

2
squaring the result, and using cot?@+1=csc? @ gives (KL)? csc? (kL) = ZH:;TL from which we

2 1/2
obtain i = Colc . Since
sinkL B2

is never smaller than unity for any value of &, there

sin &

2mUL?

o2 <1.

can be no bound state energies if

At its limits of vibration x=+A the classical oscillator has all its energy in potential form:

1. 242 2E /2 ‘ . 1
E=—mw°A“or A= 5| - Ifthe energyis quantized as E, =| n+— |i®, then the
2 ma 2
12
corresponding amplitudes are A, = [W(Zn = Dh} .
me

(a) Normalization requires 1= rjf|!//1z dx= CZTe‘Z" (1- e'x)z dx=C* T(e‘zx —27% y e )dx.
0

—~ea 0

2
The integrals are elementary and give 1=C 3 {% = 2(%) +%} = —% The proper units
-2

for C are those of (length)_l’l % thus, normalization requires C = (1242 nm
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(b) The most likely place for the electron is where the probability |]* is largest. This is

also where  itself is largest, and is found by setting the derivative i—w equal zero:
X

d - -2x -x -x
O=-£=C{ﬁe ¥ 202 }=Ce {Ze *1}.

X

The RHS vanishes when x = (a minimum), and when 2¢™* =1, or x=In2 nm.

Thus, the most likely position is at x, =In2 nm=0.693 nm.

The average position is calculated from

(x)= Ojfx|l/f[2 dx =CZTxe"zx(l-e_x)zdx=C2Tx(eﬁ2x 2 g™ )dx.
0 0

The integrals are readily evaluated with the help of the formula [ xe™dx =i2 to get
0 a

(x)=C? {l - z(iJ i} = CZ{-I—?’-}. Substituting C* =12 nm™ gives
4 9/) 16 144

{x) .l nm=1.083 nm.
12

We see that (x) is somewhat greater than the most probable position, since the

probability density is skewed in such a way that values of x larger than x,, are

weighted more heavily in the calculation of the average.

The symmetry of |y(x)|* about x=0 can be exploited effectively in the calculation of average
values. To find (x)

ca

(x)= [y dx

—ca

We notice that the integrand is antisymmetric about x =0 due to the extra factor of x (an odd
function). Thus, the contribution from the two half-axes x>0 and x <0 cancel exactly,
leaving (x) =0. For the calculation of (x2>, however, the integrand is symmetric and the half-

axes contribute equally to the value of the integral, giving

(x)= [ x|p*dx = 2C% [ x%e 20 dx.
0 0
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3
Two integrations by parts show the value of the integral to be 2(%} . Upon substituting for

3 2 2\V/2
C?, we get (x*) = 2[;1;)(2)(%) :%L and Ax=({x*) —(x)z)l’[2 :[x?o} ' =%. In calculating

the probability for the interval —Ax to +Ax we appeal to symmetry once again to write

L thAx 5 Ax x Ax 2
P= [yfrdx=2C" [¢ 2 %0dx= -zcz[—ﬂ)e-hfxu =1-¢V2 20757
A 0 2 0
ot about 75.7% independent of x;.
6-33 (a) Since there is no preference for motion in the leftward sense vs. the rightward sense,

a particle would spend equal time moving left as moving right, suggesting (p,)=0.

(b) To find (pi) we express the average energy as the sum of its kinetic and potential

2 2
energy coniributions: (E) = <—§‘1—> +({U) = %4— (L1). But energy is sharp in the

1 .
oscillator ground state, so that (E) = E; =Ehw. Furthermore, remembering that |

Li(x) =«-1£n'1co‘2x2 for the quantum oscillator, and using (x2> = zi from Problem 6-32, ‘

ma
: 1 1 haw mha
gives (U) = Ema)2<xz> = Zha) Then (pﬁ) =2m(Ey—(U)) = Zm(T) =

© Ap, = ((ﬁ) _ (P::)z)m _ (ﬂz—m)m

6-35  Applying the momentum operator [p, |= (E)i to each of the candidate functions yields
1

dx

. @  [pJia sm(toc)}{rf-]km coRllei}
. h .
(b) [p. {Asin(kx)— A cos(kx)} = (T]Ic{A cos(kx) + Asin(kx)}
1

‘ (©) [p. HAcos(kx) +iA sin(kx)} = (E_]k{—A sin(kx) +1A cos(kx)}
i

‘ (d) [px}{eik(x—a)} — [EJik{eik(x—n)}
1
In case (c), the result is a multiple of the original function, since

—~Asin(kx) +iA cos(kx) =1{ A cos(kx) +iA sin(kx)}.

The multiple is (h—,)(ik) = hk and is the eigenvalue. Likewise for (d), the operation [p,] returns
1

the original function with the multiplier %k . Thus, (c) and (d) are eigenfunctions of [p.] with
eigenvalue ik, whereas (a) and (b) are not eigenfunctions of this operator.

_
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6-37 \(a)

(©)

Normalization requires

ea

1= [[¥2dx=C? [{y] +¥i Hys +va)dx

—oa

=CH{[lyr[Pdx+ [l l dx + [ yowade + [ y1ypdx]

The first two integrals on the right are unity, while the last two are, in fact, the same
integral since y; and w, are both real. Using the waveforms for the infinite square

well, we find

L L
Jwaydx= %g sin{%} sin( Z?E z )dx = %-[[ {cos[%} - cos{w;—x)}dx

where, in writing the last line, we have used the trigonometric exponential identities

of sine and cosine. Both of the integrals remaining are readily evaluated, and are zero.

Thus, 1=C*{1+0+0+0}=2C%,orC= :/% Since y, , are stationary states, they
develop in time according to their respective energies E ; as e"E/" Then

¥(x, £)= C{WIeAiEIL/‘ﬁ + er—iEzt/ﬁ} ' |

¥(x, t) is a stationary state only if it is an eigenfunction of the energy operator
[E] =iﬁ%. Applying [E] to ¥ gives

(B[ =C {m( —1:1 ) el +ih( —1';52 sze-iﬁ,_r/rz} —ClEw, g Byt

Since E, # E,, the operations [E] does not return a multiple of the wavefunction, and
so W is not a stationary state. Nonetheless, we may calculate the average energy for
this state as
(By= [ W' [E]¥dx = c? f {w;€+iE] {h 4y} et } { Eywye Bt + By, oiEat/h } e
"—'Cz{El“V’ﬂzd""’Eszdex}

. ;i p : . 1
with the cross terms vanishing as in part (a). Since y; , are normalized and C e 3

E,+E,

we get finally (E) =
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Tunneling Phenomena

7:1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident wave

- , _la/2)a- i’ .2 it — 12

intensity, or R="F"0 U But [1-i* =(1—-)(1—if* = (1)1 +1) =1+ =2, so that
v |(1/ 2)(1 +1)| |

R =1 in this case.

(b) To the left of the step the particle is free. The solutions to Schrédinger’s equation are
2mE

. 12
"™ with wavenumber k =( 5 ) . To the right of the step U(x) =U and the
d? qy 2m N
equation is —- T —-(U-E)p(x). With y(x)=¢™", we find 'd—? =k*y(x), so that
% x
- 1/2 1/2 1z .
k= [M} . Substituting k = [ZHZE) shows that [ ] =1 or £ =—1—.
h h (U~E) u 2
(c) For 10 MeV protons, E=10 MeV and m = w. Using
¢
h=197.3 MeV fm/c(1 fm=10"" m), we find
5=i= B 197.3 MeV fm/c AL,

k- (@mE)"  [(2)(938.28 MeV/c?)10 Mevy[?

7-3 With E=25MeV and U =20 MeV, the ratio of wavenumber is

12 12 J5-1)
k—1=( E ] =( & ) =+/5 =2.236. Then from Problem?ZR—L—)Z:O.l% and
k, \E-U 25-120 (V5 +1)

T =1-R=0.854. Thus, 14.6% of the incoming particles would be reflected and 85.4% would
be transmitted. For electrons with the same energy, the transparency and reflectivity of the
step are unchanged.

7-5 (a) The transmission probability according to Equation 7.9 is
2 vz
! =l+1: K }sinh2 ol with a:LM(—uhEL.ForE<<LI,W9ﬁnd

T(E) 4E(LI-E)
ZmUL crL
' (aeL)* = >>1 by hypothesis. Thus, we may write sinha L = E . Also
U-E=U,giving ——=1+ (ijez"”‘ = (LJBZ“‘: and a probability for transmission
T(E) 16E 16E

P=T(E)= (lff) et
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(b) Numerical Estimates: (h =1.055x107 Is)
1) For m=911x10"" kg, U-E=160x10" J, L=107° m;

_ Y2
a= [zi@h—'g)]— ~512x10% m™ and 2%* =0.90

2) For m=911x10"" kg, U-E=160x107 J, L=107 m; a=512x10° m™
and e 2% =0.36

3) For m=67x10"7 kg, U-E=160x10"2 ], L=10"" m; or=4.4x 10% m™
and e2%L =041

4) Form=8kg, U-~E=1], L =002 m; #=38x10* m™ and
L 84.5><1o33 sl

7-7 The continuity requirements from Equation 7.8 are
A+B=C+D [continuity of ¥ at x=0]
ikA-ikB= oD —aC [continuity of %‘E atx= O}
x
Ce L + De*et = Fe'* [continuity of ¥ at x=L]

oDe* ™ — oCe™®" = ikFe™" [conﬁnuity of aa—\P atE= L}
x

To isolate the transmission amplitude ek must eliminate from these relations the

unwanted coefficients B, C, and D. Dividing the second line by ik and adding to the first

eliminates B, leaving A in terms of C and D. In the same way, dividing the fourth line by &

and adding the result to the third line gives D (in terms of F), while subtracting the result

from the third line gives C (in terms of F). Combining these results finally yields A:

A= i Fe™ {[2 = (ﬁ + Eﬂe*‘”‘ + [2 + (ﬁ +ﬁﬂe"‘”‘} . The transmission probability is T = L
4 ik « ik o A

Making use of the identities ¢*** = coshezL £sinh’L and cosh? @L =1+sinh? oL, we obtain

-3
F 4

= 2
=1+1[U—E+—E——+ Z]Sinhz aL=1+~i—[ u }sinhz aL

2

1

2 2
= 2c05ha’L+i(%—§JsinhaL’ =cosh2aL+l(f”-—5] sinherL

4\k «

40 E U-E E(U-E)

7-11 (a) The matter wave reflected from the trailing edge of the well (x= L) must travel the
extra distance 2L before combining with the wave reflected from the leading edge
(x=0). For 4, = 2L, these two waves interfere destructively since the latter suffers a
phase shift of 180° upon reflection, as discussed in Example 7.3.

(b) The wave functions in all three regions are free particle plane waves. In regions 1 and
3 where U(x)=U we have

P(x, f) — Aef(k’x-wt) " Bej(‘k'xfmt) -
W(x, t)= ik a-ot) | G il-K-ot) -
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[2m(E - U)]Y2

with k' = .In this case G =0 since the particle is incident from the left.

In region 2 where U(x) =0 we have
Y(x, t)= Celt-kx-ah) | ppilk-ot) O<x<L

2mE)Y? ; .
%— = %1-{5 =Z for the case of interest. The wave function and its slope
2
are continuous everywhere, and in particular at the well edges x=0 and x= L. Thus,

we must require

with k=

A+B=C+D [continuity of ¥ at x = 0]
kK'A-k’'B=kD -kC [contmmty of % atx= 0:!
Ce ™ 4 Dot = Pt [continuity of ¥ at x=L]
kDe* —kCe ™ = ket [contmmty of ,__‘:_ atx= L}

For kL =7, e*™ =_1 and the last two requirements can be combined to give

kD —kC =k’C + k’D. Substituting this into the second requirement implies

A —-B=C+ D, which is consistent with the first requirement only if B=0,ie., no
reflected wave in region 1.

As in Problem 7-12, waveform continuity and the slope condition at the site of the delta well
demand A+B=F and ik(A-B)—ikF = —( 2:15 JF Dividing the second of these equations by ik

2mS/h 32

and subtracting from the first gives 2B+ F = P+£—w—/—-)— rB= —1[ i )P =~ ( Ly ) ;
ik n%k E

JEfE

Fl A

2
— = (“EO ){1 +( Fo j] . Then, with
E E
By NTH , E, SF
T(E) from Problem 7-12, T(E) = |:1 + (TH ,wefind R(E)+T(E)= [1 - ?)[l + ( T ):! =i,

)
Thus, the reflection coefficient R isR(E) = ‘%

Divide the barrier region into N subintervals of length Ax = x;,; —x;. For the barrier in the i H

subinterval, denote by A, and F, the incident and transmitted wave amplitudes, respectively.
2

, and that for the entire barrier is

- . E
The transmission coefficient for this interval is then T; = ‘Il
i

2 2 2
By . Now consider the product IIT; =T\ T, T, ... Ty = [ 15| 5 J[ l 5 ][ iPSl J . ( [Fl 5 J
Al 41" AlA| |As* |Anl

Assuming the transmitted wave intensity for one barrier becomes the incident wave intensity

2
Pi‘ =T T,T; ... Ty . Next, we
A

assume that Ax is sufficiently small and that U(x) is sensibly constant over each interval (so
that the square barrier result can be used for T;), yet large enough to approximate sinh o;Ax

[2m(L; — E)]Y*
S e

T(E)=

for the next, we have |F|* =|4,, |E,|* =|4;|* etc, so that T(E)=

o 1 . . th
with Ee”‘f“, where ¢;, is the value taken by ¢ in the ™ subinterval: &; =
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2 2
Then, Lo 1+ o . sinh®(a;Ax) = = %4 and the transmission coefficient
T; 4E(U; - E) 16E(U; - E)

1

for the entire barrier becomes T(E) = H{[}E'E(—ut{éjﬂjlg*zai“ } = {_I-H_E'i%_gi_@}—ﬂ“:m. To
i i

recover Equation 7.10, we approximate the sum in the exponential by an integral, and note

that the product in square brackets is a term of order 1: T(E)~ Pl e_I 20008 here now

_myij2
(,U(x) = M.

The collision frequency fis the reciprocal of the transit thhe for the alpha particle crossing the
nucleus, or f = ZLR' where v is the speed of the alpha. Now v is found from the kinetic energy

which, inside the nucleus, is not the total energy E but the difference E U between the total
energy and the potential energy representing the bottom of the nuclear well. At the nuclear
radius R =9 fm, the Coulomb energy is

2 4
k(Ze)(2¢e) — zz[ki][fgj =2(88)(27.2 eV)[._SMJ =28.14 MeV .
R ao R 9 fm

From this we conclude that U =~1.86 MeV to give a nuclear barrier of 30 MeV overall. Thus
an alpha with E =4.05 MeV has kinetic energy 4.05+1.86=551 MeV inside the nucleus. Since
the alpha particle has the combined mass of 2 protons and 2 neutrons, or about

3755.8 MEV/ ¢* this kinetic energy represents a speed

12 1/2
- (i‘?_k_) |- B 1 e,
m 3755.8 MeV/c
Thus, we find for the collision frequency f = L N 9.35x10% Hz.

2R 2(9 fm)






