Applications of statistical physics to
selected solid-state physics phenomena
for metals

“similar” models for thermal and electrical
conductivity for metals, on basis of free electron
gas, treated with Maxwell-Boltzmann statistics —
l.e. as If it were an ideal gas

Lorenz numbers, a fortuitous result, don’t be
fooled, the physics (Maxwell-Boltzmann statistics)
behind it is not applicable as we estimated earlier

But Fermi-Dirac statistics gets us the right physics



Table 12.5 Thermal Conductivity, K, and Electrical
Conductivity, o, of Selected Substances
at Room Temperature

Substance KinW-m™1K™! oin (2-m)~!

Silver 427 62 X 10°

Copper 390 59 X 10°

Gold 314 41 X 10°

Aluminum 210 35 X 10°

Iron 63 10 X 109

Steel 50 1.4 X 10°

Nichrome 14 0.9 X 10°

Quartz 13

NaCl 7.0 <1074
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Metals have high conductivities for both electricity and heat. To explain both
the high conductivities and the trend in this table we need to have a model for
both thermal and electrical conductivity, that model should be able to explain
empirical observations, i.e. Ohm’s law, thermal conductivity, Wiedemann-
Franz law,



Table 12.7 Experimental \\iademann and Franz

Lorentz Numbers K/oT in
Units of 10-3W-Q/K2x  Law, 1853, ratio K/sT =
Metal 973 K 300K 373 k LOrenz number = constant

23 937 M 2.4 10-8 W O K -2

Ag 2.31
Au 2.35 295 240 _
S L A8 Independent of the metal
u 223 2.2 2.3: .
Ir 9.49 249 considered !! So both
Mo 2.61 9.79
-y " e phenomeng s_hould be_
Pt 2.51 260 pased on similar physical
Sn 2.52 249 .
W 3.04 500 ldea !l
/n 2.31] 2.33 _
Classical from Drude (early 1900s)

s T , theory of free electron gas

K _ 3K;

=B %1.12X0 VWMWK "2 Too small by factor 2, .

seems not too bad ???
ST 2e



To explain the high conductivities and the trend we need to have a model for
both thermal and electrical conductivity, that model should be able to explain

Ohm'’s law, empirical for many metals and insulators, ohmic

solids Conductivity , resistivity is its reciprocal value

J=s E current density is proportional to
applied electric field

R=Y/ forawireR=7?!/,
J: current density A/m?

s: electrical conductivity O-1 m-1, reciprocal value of electrical
resistivity

E: electric field V/m

Also definition of s: a single constant that does depend on the
material and temperature but not on applied electric field 4
represents connection between | and U



Gas of classical charged particles, electrons, moves through
Immobile heavy ions arranged in a lattice, v, from equipartition
theorem (which is of course derived from Boltzmann statistics)

2
o Zmy =Sk
/ ® Finish 2 2

Vm:\ﬁ ES)
m,

Between collisions, there is a
mean free path length: L = v

i

t

'ms

@) and a mean free time t (tau)

Figure 12.11 (a) Random successive displacements of an electron in a metal without
an applied electric field. >



Start

If there is an electric field
E, there is also a drift
speed v, (108 times
smaller than v,.) but
proportional to E, equal
for all electrons

"1
el =
—
.—)
[—
W
I
e

(b) B m,

Figure 12.11 (b) A combination of random displacements and displacements produced
by an external electric field. The net effect of the electric field is to add together multiple
displacements of length v, t opposite the field direction. For purposes of illustration, this
figure greatly exaggerates the size of v, compared with v,.. 6



_ heAv,dt
Adt

Substituting for v,

J

= nev,

= net -

M,
So the correct
form of Ohm’s law
IS predicted by the
Drude model !

Figure 12.12 The connection between current

density, J, and drift velocity, v4. The charge that

passes through A in time dt is the charge

contained in the small parallelepiped, neAv, dt. v



2
_— nezt With mean free time t = S = ne L
S = LIV, Vv
me 2 me rms
ne L
With v, according to S —
Maxwell-Boltzmann
statistics \/BkBTrne

Proof of the pudding: L should be on the order of magnitude of the inter-atomic
distances, e.g. for Cu 0.26 nm

. __ 849x07cm®(6.02x0 *C)* 0.26nm
\/3%.381X10 2 JK 1 x300K »9.109%10 kg

S cu. 300k = -3 10° (Om)* compare with experimental value 59 10°
(Om) 1, something must we wrong with the classical Land v, s



Result of Drude theory one order of magnitude too small, so L
must be much larger, this is because the electrons are not
classical particles, but wavicals, don’t scatter like particles, in
addition, the v, . from Boltzmann-Maxwell is one order of
magnitude smaller than the v, following from Fermi-Dirac

statistics
Table 12.6 Electrical Conductivity of

Metals at 300 K

Substance Measured o in (Q-m)~!
Copper 59 X 10°
Aluminum 35 X 10°
Sodium 29 x 109
Iron 10 X 10

Mercury 1.0 X 10°

© 2005 Brooks/Cole - Thomeon



p(><1(l_HQ""”) S -1 — \/3kBTme — r

il ne’L

So ? ~T%> theory
for all temperatures,
but ? ~T for
reasonably high T ,
so Drude’s theory
must be wrong !

| i | | | E |
100 200 300 400 500 600 700

T (K) s—

>
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Figure 12.13 The resistivity of pure copper as a function of temperature.
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Phenomenological similarity conduction of electricity and
conduction of heat, so free electron gas should also be the key
to understanding thermal conductivity

DV Ohm’s law with Voltage gradient,
J=-5 —
Dx
DQ DT thermal energy conducted through area
—* =-K A In time interval ?t is proportional to
ADt [Dx temperature gradient
= } CVV |  Using Maxwell-Boltzmann statistics,
3 s equipartion theorem, formulae of C, for
ideal gas =3/, kg n
KNV, L

Classical expression for K

2 11



2 For 300 K and Cu
v = NEES
m, - \/3>§L381>10‘23JK'1300K

9.1090 *kg
Konv L
2

~1.38140 *JK 158.48x0%°cm ° x.1681x10°ms * >0.26nm
2

_1.381X10 ®JK " *>8.48X10°m ° ®1.1681X10°ms * x0.26 0 °m
2

Lets
continue K —

K

K

Ws Experimental value for Cu at (300 K) = 390 Wm-1K-1,
K=17.78—— again one order of magnitude too small, actually

Kms roughly 20 times too smalll 12



ne’L

g = This was also one order of magnitude too
my, small,
K/ — anV Lrne mrs — Brne mrs
S 2ne’L 2€”
2
With — /3k T K/ —
M;xwell- Vi — \/; = B S
Boltzmann m,
Lorenz number classical ¥/ Wrong only by a
factor of about 2,

K 3k2 Such an

— =B »1.1240°WWK? agreement is called
ST 2€? fortuitous 13



Table 12.7 Experimental
Lorentz Numbers K/oT in
Units of 1078 W- Q/K?2*

Metal 273 K 373 K
Ag 2.31 2.37
Au 2.35 2.40
Gl 2.42 2.43
G 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 202 2.49
W 3.04 3.20
/n 2.51 298

© 200% Brooks/Cole - Thomson
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replace I-for_a_particle with I—for_a_wavial and Vims with Viermis

2
neszor a_particle S _ ne Lfor_a_wavical
S Jassical — =—= > tum —
classical quan
r'nevrms rnevfermi
L — I’nevfermis guantum
for a wavical — 2
- Nne

2 2E
Vims = \/; - 1/ m, me

For Cu (at 300 K), E- = 7.05 eV , Fermi energies have only

small temperature dependency, frequently neglected .



=1.5740°ms*

v == |2Ee _ [2x7.054.602%10°°J
ferm rne errmi ,copper ,300K 0109 X0 31kg

one order of magnitude larger than classical v,

for ideal gas
— I’nevfermis guantum

for _a_ wavical ~— 2

NE

L

| =

for _a_wavical _cooper

0.109x0 *'kg ®.57 40°ms *>5.9x10'W'm™
8.49X0%°m °(1.602 X0 *°C)?

two orders of magnitude larger

L than classical result for particle,

=39nm

for _a_ wavical _cooper



ne’L

for _a_particle

mevr mS

So here something two orders of two magnitude too small (L)
gets divided by something one order of magnitude too small

(Vrms)’

l.e. the result for electrical conductivity must be one order of
magnitude too small, which is observed !!

S —

classical

But L ¢ paricie IS quite reasonable, so replace V.o with Vi, ..
and the conductivity gets one order of magnitude larger, which
IS close to the experimental observation, so that one keeps the
Drude theory of electrical conductivity as a classical

approximation for room temperature
17



in effect, neither the high v, . of 10> m/s of the electrons
derived from the equipartion theorem or the 10 times higher
Fermi speed do not contribute directly to conducting a current
since each electrons goes in any directions with an equal
likelihood and this speeds averages out to zero charge
transport in the absence of E

> E
:J" e, -\.\.‘-‘-\ //._‘a =
f oy . =
; / DVl ~(X) Start
(%) Start e @
- - ;? J___...-" - o --/. - .;. ﬁ . - |
~ L (X Finish / J - |
L / \ - |
! % — \ » 4
| 7 ———— A .. L. I
: g e Finish |
1 b 8 | :
“, { - | |
4 f I . |
F, F 5
5 ". g i I -~ ]
| 4 . T— R f |
= . - = '_/ - .
i I{I T

(a) (h)

@ 2005 Brooks!Cole - Thomson

Figure 12.11 (a) Random successive displacements of an electron in a metal without an
applied electric field. (b) A combination of random displacements and displacements produced
by an external electric field. The net effect of the electric field is to add together multiple
displacements of length v, t opposite the field direction. For purposes of illustration, this figltére
greatly exaggerates the size of v, compared with v, .



_kgnv L

— classical
classical 2

K

V... was too small by one order of magnitude, L qqicq WAS
too small by two orders of magnitude, the classical
calculations should give a result 3 orders of magnitude
smaller than the observation (which is of course well
described by a quantum statistical treatment)

so there must be something fundamentally wrong with our
iIdeas on how to calculate K, any idea ???

19



Wait a minute, K has something to do with the heat capacity
that we derived from the equipartion theorem

1

Kclassical = g CV for_ideal_gasvrmstor_particle

We had the result earlier that the contribution of the electron
gas is only about one hundredth of what one would expect
from an ideal gas, C, o jgeal gas 1S @ctually two orders or
magnitude larger than for a real electron gas, so that are two
orders of magnitude in excess, with the product of vrms and
Ltor particte three orders of magnitude too small, we should
calculate classically thermal conductivities that are one order
of magnitude too small, which is observed !!!

20



K k nvrmerne mrs — me mrs
S 2ne’L 2¢e”

2
K o3 11240 Wik 2

sT 2¢€°

fortunately L cancelled, but v, . gets squared, we are indeed
very very very fortuitous to get the right order of magnitude
for the Lorenz number from a classical treatment

(one order of magnitude too small squared is about two orders of
maghnitude too small, but this is “compensated” by assuming that the
heat capacity of the free electron gas can be treated classically which in
turn results in a value that is by itself two order of magnitude too large-
two “missing” orders of magnitude times two “excessive orders of

magnitudes levels about out 21



K

p°, KT
ferm (

= )nL
3 mevfermi

for _a_wavical

~ ne‘L

for _a_wavical

mev fermi

S

quantum

That gives for the Lorenz number in a quantum treatment

21,2
K _PKs _ 5 4540 WK 2

sT 3¢’
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Table 12.7 Experimental
Lorentz Numbers K/oT in
Units of 1078 W- Q/K?2*

Metal 273 K 373 K
Ag 2.31 2.37
Au 2.35 2.40
Gl 2.42 2.43
G 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 202 2.49
W 3.04 3.20
/n 2.51 298

© 200% Brooks/Cole - Thomson
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Back to the problem of the temperature dependency of
resistivity

Drude’s theory predicted a dependency on square root
p(x10% Qe m) of T, but at reasonably high temperatures, the

3

******** 1 dependency seems to be linear

[ ==
b ]

This is due to Debye’s
phonons (lattice vibrations),
which are bosons and need to
be treated by Bose-Einstein
statistics, electrons scatter on
100 200 300 400 500 600 700 phonons, so the more

= phonons, the more scattering

0 2(HS Brock ol - Thomeon

Number of phonons proportional to Bose-Einstein distribution function

1 Which becomes kBT
for reasonably n
large T

n

phonons l"l Aw/kgT 1

e phonons I-l hW




At low temperatures, there are hardly any phonons,
scattering of electrons is due to impurity atoms and
lattice defects, If it were not for them, there would

not be any resistance to the flow of electricity at
zero temperature

Matthiessen’s rule, the resistivity of a metal can be
written as

S = Sjattice defects + S lattice vibrations
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