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Applications of statistical physics to 
selected solid-state physics phenomena 
for metals 
“similar” models for thermal and electrical 
conductivity for metals, on basis of free electron 
gas, treated with Maxwell-Boltzmann statistics –
i.e. as if it were an ideal gas 

Lorenz numbers, a fortuitous result, don’t be 
fooled, the physics (Maxwell-Boltzmann statistics) 
behind it is not applicable as we estimated earlier

But Fermi-Dirac statistics gets us the right physics
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Metals have high conductivities for both electricity and heat. To explain both 
the high conductivities and the trend in this table we need to have a model for 
both thermal and electrical conductivity, that model should be able to explain 
empirical observations, i.e. Ohm’s law, thermal conductivity, Wiedemann-
Franz law, 
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Wiedemann and Franz 
Law, 1853, ratio K/sT = 
Lorenz number = constant 
≈ 2.4 10-8 W O K -2 

independent of the metal 
considered !! So both 
phenomena should be 
based on similar physical 
idea !!!
Classical from Drude (early 1900s) 
theory of free electron gas

Too small by factor 2, 
seems not too bad ???

28
2

2

1012.1
2
3 −− Ω⋅≈= KW

e
k

T
K B

σ

2.2

2.55
2.3

300K



4

To explain the high conductivities and the trend we need to have a model for 
both thermal and electrical conductivity, that model should be able to explain

Ohm’s law, empirical for many metals and insulators, ohmic 
solids

J = s E    current density is proportional to 
applied electric field   

R = U / I for a wire R = ? l / A
J: current density A/m2

s : electrical conductivity O-1 m-1, reciprocal value of electrical 
resistivity 

E: electric field V/m

Also definition of s : a single constant that does depend on the 
material and temperature but not on applied electric field 
represents connection between I and U

Conductivity , resistivity is its reciprocal value
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Figure 12.11 (a) Random successive displacements of an electron in a metal without 
an applied electric field. 

Gas of classical charged particles, electrons, moves through 
immobile heavy ions arranged in a lattice, vrms from equipartition 
theorem (which is of course derived from Boltzmann statistics)

Between collisions, there is a 
mean free path length: L = vrms t

and a mean free time t (tau) 
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Figure 12.11  (b) A combination of random displacements and displacements produced 
by an external electric field. The net effect of the electric field is to add together multiple 
displacements of length vd τ opposite the field direction. For purposes of illustration, this 
figure greatly exaggerates the size of vd compared with vrms. 

If there is an electric field 
E, there is also a drift 
speed vd (108 times 
smaller than vrms) but 
proportional to E, equal 
for all electrons
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Figure 12.12 The connection between current 
density, J, and drift velocity, vd. The charge that 
passes through A in time dt is the charge 
contained in the small parallelepiped, neAvd dt. 
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So the correct 
form of Ohm’s law 
is predicted by the 
Drude model !! 
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Proof of the pudding: L should be on the order of magnitude of the inter-atomic 
distances, e.g. for Cu 0.26 nm
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s Cu, 300 K = 5.3 106 (Om)-1 compare with experimental value 59 106

(Om) -1, something must we wrong with the classical L and vrms
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Result of Drude theory one order of magnitude too small, so L 
must be much larger, this is because the electrons are not 
classical particles, but wavicals, don’t scatter like particles, in 
addition, the vrms from Boltzmann-Maxwell is one order of 
magnitude smaller than the vfermi following from Fermi-Dirac 
statistics



10Figure 12.13 The resistivity of pure copper as a function of temperature. 
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So ? ~T0.5 theory 
for all temperatures, 
but ? ~T for 

reasonably high T , 
so Drude’s theory 
must be wrong !
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Phenomenological similarity conduction of electricity and 
conduction of heat, so free electron gas should also be the key 
to understanding thermal conductivity 
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Ohm’s law with Voltage gradient, 

thermal energy conducted through area 
A in time interval ? t is proportional to 
temperature gradient

Using Maxwell-Boltzmann statistics, 
equipartion theorem, formulae of Cv for 
ideal gas = 3/2 kB n 

Classical expression for K
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Experimental value for Cu at (300 K) = 390 Wm-1K-1, 
again one order of magnitude too small, actually 
roughly 20 times too small

Lets 
continue
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Lorenz number classical K/s
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Wrong only by a 
factor of about 2, 
Such an 
agreement is called 
fortuitous
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replace Lfor_a_particle with Lfor_a_wavial and vrms with vfermi,

For Cu (at 300 K), EF = 7.05 eV , Fermi energies have only 
small temperature dependency, frequently neglected 
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So here something two orders of two magnitude too small (L) 
gets divided by something one order of magnitude too small 
(vrms), 

i.e. the result for electrical conductivity must be one order of
magnitude too small, which is observed !!

But L for particle is quite reasonable, so replace Vrms with Vfermi
and the conductivity gets one order of magnitude larger, which 
is close to the experimental observation, so that one keeps the 
Drude theory of electrical conductivity as a classical 
approximation for room temperature
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Figure 12.11 (a) Random successive displacements of an electron in a metal without an 
applied electric field. (b) A combination of random displacements and displacements produced 
by an external electric field. The net effect of the electric field is to add together multiple 
displacements of length vd τ opposite the field direction. For purposes of illustration, this figure 
greatly exaggerates the size of vd compared with vrms. 

.in effect, neither the high vrms of 105 m/s of the electrons 
derived from the equipartion theorem or the 10 times higher 
Fermi speed do not contribute directly to conducting a current 
since each electrons goes in any directions with an equal 
likelihood and this speeds averages out to zero charge 
transport in the absence of E 
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Vrms was too small by one order of magnitude, Lclassical was 
too small by two orders of magnitude, the classical 
calculations should give a result 3 orders of magnitude 
smaller than the observation (which is of course well 
described by a quantum statistical treatment) 

so there must be something fundamentally wrong with our 
ideas on how to calculate K, any idea ???
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Wait a minute, K has something to do with the heat capacity 
that we derived from the equipartion theorem

particleforrmsgasidealforVclassical LvCK ____3
1
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We had the result earlier that the contribution of the electron 
gas is only about one hundredth of what one would expect 
from an ideal gas, Cv for ideal gas is actually two orders or 
magnitude larger than for a real electron gas, so that are two  
orders of magnitude in excess, with the product of vrms and 
Lfor particle three orders of magnitude too small, we should 
calculate classically thermal conductivities that are one order 
of magnitude too small, which is observed !!!
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fortunately L cancelled, but vrms gets squared, we are indeed 
very very very fortuitous to get the right order of magnitude 
for the Lorenz number from a classical treatment

(one order of magnitude too small squared is about two orders of
magnitude too small, but this is “compensated” by assuming that the 
heat capacity of the free electron gas can be treated classically which in 
turn results in a value that is by itself two order of magnitude too large-
two “missing” orders of magnitude times two “excessive orders of
magnitudes levels about out
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That gives for the Lorenz number in a quantum treatment
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Back to the problem of the temperature dependency of 
resistivity

This is due to Debye’s
phonons (lattice vibrations), 
which are bosons and need to 
be treated by Bose-Einstein 
statistics, electrons scatter on 
phonons, so the more 
phonons, the more scattering 

Drude’s theory predicted a dependency on square root 
of T, but at reasonably high temperatures, the 
dependency seems to be linear

Number of phonons proportional to Bose-Einstein distribution function 
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Which becomes 
for reasonably 
large T
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At low temperatures, there are hardly any phonons, 
scattering of electrons is due to impurity atoms and 
lattice defects, if it were not for them, there would 
not be any resistance to the flow of electricity at 
zero temperature

Matthiessen’s rule, the resistivity of a metal can be 
written as 

s = s lattice defects + s lattice vibrations


