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A one-map two-clock approach to teaching relativity in introductory physics
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This paper presents some ideas which might assist teachers
incorporating special relativity into an introductory physics
curriculum. One can define the proper-time/velocity pair, as
well as the coordinate-time/velocity pair, of a traveler using
only distances measured with respect to a single “map” frame.
When this is done, the relativistic equations for momentum,
energy, constant acceleration, and force take on forms strik-
ingly similar to their Newtonian counterparts. Thus high-
school and college students not ready for Lorentz transforms
may solve relativistic versions of any single-frame Newtonian
problems they have mastered. We further show that multi-
frame calculations (like the velocity-addition rule) acquire
simplicity and/or utility not found using coordinate velocity
alone. From physics-9611011 (xxx.lanl, NM, 1996).

03.30.+p, 01.40.Gm, 01.55.+b

I. INTRODUCTION

Since the 1920’s, it has been known that classical New-
tonian laws depart from a description of reality, as veloc-
ity approaches the speed of light. This divergence be-
tween Newtonian and relativistic physics was one of the
most remarkable discoveries of this century. Yet, more
than 70 years later, most American high schools and col-
leges teach introductory students Newtonian dynamics,
but then fail to teach students how to solve those same
problems relativistically. When relativity is discussed at
all, it often entails only a rather abstract introduction to
Lorentz transforms, relegated to the back of a chapter
(or the back of a book).

This is in part due to the facts that: (i) Newton’s laws
work so well in routine application, and (ii) introductions
to special relativity (often patterned after Einstein’s in-
troductions to the subject) focus on discovery-philosophy
rather than applications. Caution, and inertia associated
with old habits, may play a role as well. It is nonetheless
unfortunate because teaching Newtonian solutions with-
out relativistic ones at best leaves the student’s educa-
tion out-of-date, and deprives them of experiences which
might spark an interest in further physics education. At
worst, partial treatments may replace what is missing
with misconceptions about the complexity, irrelevance,
and/or the limitations of relativity in the study, for ex-
ample, of simple things like uniform acceleration.

Efforts to link relativistic concepts to classical ones
have been with us from the beginning. For example, the

observation that relativistic objects behave at high speed
as though their inertial mass increases in the −→p = m−→v
expression, led to the definition (used in many early
textbooks1) of relativistic mass m′ ≡ mγ. Such ef-
forts are worthwhile because they can: (A) potentially
allow the introduction of relativity concepts at an earlier
stage in the education process by building upon already-
mastered classical relationships, and (B) find what is
fundamentally true in both classical and relativistic ap-
proaches. The concepts of transverse (m′) and longi-
tudinal (m′′ ≡ mγ3) masses have similarly been used2

to preserve relations of the form Fx = max for forces
perpendicular and parallel, respectively, to the velocity
direction.

Unfortunately for these relativistic masses, no deeper
sense has emerged in which the mass of a traveling ob-
ject either changes, or has directional dependence. Such
masses allow familiar relationships to be used in keeping
track of non-classical behaviors (item A above), but do
not (item B above) provide frame-invariant insights or
make other relationships simpler as well. Hence majority
acceptance of their use seems further away now3 than it
did several decades ago4.

A more subtle trend in the literature has been to-
ward the definition of a quantity called proper velocity5,6,
which can be written as −→w ≡ γ−→v . We use the sym-
bol w here because it is not in common use elsewhere
in relativity texts, and because w resembles γv from a
distance. This quantity also allows the momentum ex-
pression above to be written in classical form as a mass
times a velocity, i.e. as −→p = m−→w . Hence it serves one
of the “type A” goals served by m′ above. However, it
remains an interesting but “homeless” quantity in the
present literature. In other words, proper-velocity dif-
fers fundamentally from the familiar coordinate-velocity,
and unlike the latter has not in textbooks been linked
to a particular reference frame. After all, it uses dis-
tance measured in an inertial frame but time measured
on the clocks of a moving and possibly accelerated ob-
server. However, there is also something deeply physical
about proper-velocity. Unlike coordinate-velocity, it is a
synchrony-free7,8 (i.e. local-clock only) means of quan-
tifying motion. Moreover, A. Ungar has recently made
the case9 that proper velocities, and not coordinate ve-
locities, make up the gyrogroup analog to the velocity
group in classical physics. If so, then, is it possible that
introductory students might gain deeper physical insight
via its use?
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The answer is yes. We show here that proper-velocity,
when introduced as part of a “one-map two-clock” set of
time/velocity variables, allows us to introduce relativistic
momentum, time-dilation, and frame-invariant relativis-
tic acceleration/force into the classroom without invok-
ing discussion of multiple inertial frames or the abstract
mathematics of Lorentz transformation (item A above).
Moreover, through use of proper-velocity many relation-
ships (including those like velocity-addition, which re-
quire multiple frames or more than one “map”) are made
simpler and sometimes more useful. When one simplifica-
tion brings with it many others, this suggests that “item
B” insights may be involved as well. The three sections
to follow deal with the basic, acceleration-related, and
multi-map applications of this “two-clock” approach by
first developing the equations, and then discussing class-
room applications.

II. A TRAVELER, ONE MAP, AND TWO
CLOCKS

One may argue that a fundamental break between clas-
sical and relativistic kinematics involves the observation
that time passes differently for moving observers, than
it does for stationary ones. In typical texts, discus-
sion of this fact involves discussion of separate traveler
and map (e.g. primed and unprimed) inertial reference
frames, perhaps including Lorentz transforms between
them, even though the traveler may be accelerated and
changing reference frames constantly! This is not needed.
Instead, we define two time variables when describing the
motion of a single object (or “traveler”) with respect to a
single inertial coordinate frame (or “map”). These time
variables are the “map” or coordinate-time t, and the
“traveler” or proper-time τ . However, only one measure-
ment of distances will be considered, namely that associ-
ated with the inertial reference frame or “map”.

It follows from above that two velocities will arise as
well, namely the coordinate-velocity −→v ≡ d−→x /dt, and
proper-velocity −→w ≡ d−→x /dτ . The first velocity mea-
sures map-distance traveled per unit map time, while the
latter measures map-distance traveled per unit traveler
time. Each of these velocities can be calculated from the
other by knowing the velocity-dependence of the “trav-
eler’s speed of map-time” γ ≡ dt/dτ , since it is easy to
see from the definitions above that:

−→w = γ−→v . (1)

Because all displacements dx are defined with re-
spect to our map frame, proper-velocity is not simply
a coordinate-velocity measured with respect to a differ-
ent map. However, it does have a well-defined home, in
fact with many “brothers and sisters” who live there as
well. This family is comprised of the velocities reported
by the infinite number of moving observers who might
choose to describe the motion of our traveler, with their

own clock on the map of their common “home” frame of
reference10 . One might call the members of this family
“non-coordinate velocities”, to distinguish them from the
coordinate-velocity measured by an inertial observer who
stays put in the frame of the map. The cardinal rule for
all such velocities is: everyone measures displacements
from the vantage point of the home frame (e.g. on a copy
of a reference-frame map in their own vehicle’s glove com-
partment). Thus proper velocity −→w is that particular
non-coordinate velocity which reports the rate at which
a given traveler’s position on the reference map changes,
per unit time on the clock of the traveler.

A. Developing the basic equations

A number of useful relationships for the above “trav-
eler’s speed of map-time” γ, including it’s familiar re-
lationship to coordinate-velocity, follow simply from the
nature of the flat spacetime metric. Their derivation is
outlined in Appendix A. For students not ready for four-
vectors, however, one can simply quote Einstein’s pre-
diction that spacetime is tied together so that instead of
γ = 1, one has γ = 1/

√
1− (v/c)2 = E/mc2, where E is

Einstein’s “relativistic energy” and c is the speed of light.
By solving eqn. 1 for w(v), and putting the inverted so-
lution v(w) into the expression for γ above, the following
string of useful relationships follow immediately:

γ ≡ dt

dto

=
1√

1−
(
v
c

)2 =

√
1 +

(w
c

)2

=
E

mc2
= 1 +

K

mc2
. (2)

Here of course K is the kinetic energy of motion, equal
classically to 1

2mv
2.

Because equation 2 allows one to relate velocities to
energy, an important part of relativistic dynamics is in
hand as well. Another important part of relativistic dy-
namics, mentioned in the introduction, takes on familiar
form since momentum at any speed is

−→p = m−→w = mγ−→v . (3)

This relation has important scientific consequences as
well. It shows that momentum like proper velocity has
no upper limit, and that coordinate velocity becomes ir-
relevant to tracking momentum at high speeds (since for
w � c, v ' c and hence p ∝ γ). All of the equations in
this section are summarized for reference and comparison
in Table I.

B. Basic classroom applications

One of the simplest exercises a student might perform
is to show that, as proper velocity w goes to infinity, the
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coordinate-velocity v never gets larger than speed limit
c. This can be done by simply solving equation 1 for v
as a function of w. Since student intuition should argue
strongly against “map-distance per unit traveler time”
becoming infinite, an upper limit on coordinate-velocity
v may thus from the beginning seem a very reasonable
consequence. In typical introductory courses, this upper
limit on coordinate-velocity is not something students
are given a chance to prove for themselves. Students
can also show, for themselves at this point, that classical
kinematics follows when all speeds involved obey v � c,
since this implies that γ ' 1 (cf. Table I).

Given these tools to describe the motion of an object
with respect to single map frame, another type of rel-
ativistic problem within range is that of time dilation.
From the very definition of γ as a “traveler’s speed of
map-time”, and the velocity relations which show that
γ ≥ 1, it is easy for a student to see that the traveler’s
clock will always run slower than map time. Hence if
the traveler holds a fixed speed for a finite time, one has
from equation 2 that traveler time is dilated (spread out
over a larger interval) relative to coordinate time, by the
relation

∆t = γ∆τ ≥ ∆τ (4)

Thus time-dilation problems can be addressed. This is
one of several skills that this strategy can offer to students
taking only introductory physics, an “item A” benefit ac-
cording to the introduction. A practical awareness of the
non-global nature of time thus does not require readiness
for the abstraction of Lorentz transforms.

Convenient units for coordinate-velocity are [lightyears
per map-year] or [c]. Convenient units for proper-
velocity, by comparison, are [lightyears per traveler year]
or [ly/tyr]. When proper-velocity reaches 1 [ly/tyr],
coordinate-velocity is 1√

1+1
= 1√

2
' 0.707 [c]. Thus

w = 1 [ly/tyr] is a natural dividing line between clas-
sical and relativistic regimes. In the absence of an ab-
breviation with mnemonic value for 1 [ly/tyr], students
sometimes call it a “roddenberry” [rb], perhaps because
in english this name evokes connections to “hotrodding”
(high-speed), berries (minimal units for fruit), and a sci-
ence fiction series which ignores the lightspeed limit to
which coordinate-velocity adheres. It is also worth point-
ing out to students that, when measuring times in years,
and distances in light years, one earth gravity of acceler-
ation is conveniently g ' 1.03 [ly/yr2].

We show here that the major difference between clas-
sical and two-clock relativity involves the dependence of
kinetic energy K on velocity. Instead of 1

2mv
2, one has

mc2(

√
1 +

(
w
c

)2 − 1) which by Taylor expansion in w
c

goes as 1
2mw

2 when w � c. Although the relativistic
expression is more complicated, it is not prohibitive for
introductory students, especially since they can first cal-
culate the physically interesting “speed of map-time” γ,
and then figure K = mc2(γ − 1). If they are given rest-
energy equivalents for a number of common masses (e.g.

for electrons mec
2 ' 511keV ), this might make calcula-

tion of relativistic energies even less painful than in the
classical case!

Concerning momenta, one might imagine from its def-
inition that proper-velocity w is the important speed
to a relativistic traveler trying to get somewhere on a
map (say for example to Chicago) with minimum trav-
eler time. Equation 3 shows that it is also a more in-
teresting speed from the point of view of law enforce-
ment officials wishing to minimize fatalities on futuristic
highways where relativistic speeds are an option. Proper
velocity tells us what is physically important, since it is
proportional to the momentum available in the collision.
If we want to ask how long it will take an ambulance to
get to the scene of an accident, then of course coordinate
velocity may be the key.

Given that proper velocity is the most direct link to
physically important quantities like traveler-time and
momentum, it is not surprising that a press unfamiliar
with this quantity does not attend excitedly, for example,
to new settings of the “land speed record” for fastest ac-
celerated particle. New progress changes the value of v,
the only velocity they are prepared to talk about, in the
7th or 8th decimal place. The story of increasing proper
velocity, thus, goes untold to a public whose imagination
might be captured thereby. Thus proper-velocities for
single 50GeV electrons in the LEP2 accelerator at CERN
might be approaching w = γv = E

mc2
× v ' 50GeV

511keV
× c '

105 [lightyears per traveler year], while the educated lay
public (comprised of those who have had no more than
an introductory physics course) is under a vague impres-
sion that the lightspeed limit rules out major progress
along these lines.

III. ACCELERATION AND FORCE WITH ONE
MAP AND TWO CLOCKS.

The foregoing relations introduce, in context of a sin-
gle inertial frame and without Lorentz transforms, many
of the kinematical and dynamical relations of special rel-
ativity taught in introductory courses, in modern physics
courses, and perhaps even in some relativity courses. In
this section, we cover less familiar territory, namely the
equations of relativistic acceleration. Forces if defined
simply as rates of momentum-change in special relativity
have no frame-invariant formulation. That is, different
map frames will see different forces acting on a given
traveler. Moreover, solving problems with coordinate 3-
vector acceleration alone can be very messy, indeed1.

Because of this, relativistic acceleration is seldom dis-
cussed in introductory courses. Can relativistic equa-
tions for constant acceleration, instead, be cast in famil-
iar form? The answer is yes: a frame-invariant 3-vector
acceleration, with simple integrals, arises naturally in
one-map two-clock relativity. Although the development
of the (3+1)D equations is tedious, we show that this
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acceleration bears a familiar relationship to the frame-
independent rate of momentum change (i.e. the force)
felt by an accelerated traveler.

A. Developing the acceleration equations.

By examining the frame-invariant scalar product of
the acceleration 4-vector, one can show (as we do in the
Appendix) that a “proper acceleration” −→α for our trav-
eler, which is the same to all inertial observers and thus
“frame-invariant”, can be written in terms of components
for the classical acceleration vector −→a by:

−→α =
γ3

γ⊥
−→a ,where −→a ≡ d2−→x

dt2
. (5)

This is remarkable, given that −→a is so strongly frame-
dependent! Here the “transverse time-speed“ γ⊥ is de-
fined as 1/

√
1− (v⊥/c)2, where v⊥ is the component of

coordinate velocity −→v perpendicular to the direction of
coordinate acceleration −→a . In this section generally, in
fact, subscripts ‖ and ⊥ refer to parallel and perpendicu-
lar component-directions relative to the direction of this
frame-invariant acceleration 3-vector −→α , and not (for ex-
ample) relative to coordinate velocity −→v .

Before considering integrals of the motion for constant
proper acceleration −→α , let’s review the classical integrals
of motion for constant acceleration −→a . These can be
written as a ' ∆v‖/∆t ' 1

2∆(v2)/∆x‖. The first of
these is associated with conservation of momentum in the
absence of acceleration, and the second with the work-
energy theorem. These may look more familiar in the
form v‖f ' v‖i+a∆t, and v2

‖f ' v2
‖i+2a∆x‖. Given that

coordinate velocity has an upper limit at the speed of
light, it is easy to imagine why holding coordinate accel-
eration constant in relativistic situations requires forces
which change even from the traveler’s point of view, and
is not possible at all for ∆t > (c− v‖i)/a.

Provided that proper time τ , proper velocity w, and
time-speed γ can be used as variables, three simple inte-
grals of the proper acceleration can be obtained by a pro-
cedure which works for integrating other non-coordinate
velocity/time expressions as well10. The resulting inte-
grals are summarized in compact form, like those above,
as

α = γ⊥
∆w‖
∆t

= c
∆η‖
∆τ

=
c2

γ⊥

∆γ

∆x‖
. (6)

Here the integral with respect to proper time τ has been
simplified by further defining the hyperbolic velocity an-
gle or rapidity11 η‖ ≡ sinh−1[w‖/c] = tanh−1[v‖/c]. Note
that both v⊥ and the “transverse time-speed” γ⊥ are con-
stants, and hence both proper velocity, and longitudinal
momentum p‖ ≡ mw‖, change at a uniform rate when
proper acceleration is held constant. If motion is only in
the direction of acceleration, γ⊥ is 1, and ∆p/∆t = mα
in the classical tradition.

In classical kinematics, the rate at which traveler en-
ergy E increases with time is frame-dependent, but the
rate at which momentum p increases is invariant. In spe-
cial relativity, these rates (when figured with respect to
proper time) relate to each other as time and space com-
ponents, respectively, of the acceleration 4-vector. Both
are frame-dependent at high speed. However, we can de-
fine proper force separately as the force felt by an ac-
celerated object. We show in the Appendix that this is
simply

−→
F ≡ m−→α . That is, all accelerated objects feel a

frame-invariant 3-vector force
−→
F in the direction of their

acceleration. The magnitude of this force can be calcu-
lated from any inertial frame, by multiplying the rate
of momentum change in the acceleration direction times
γ⊥, or by multiplying mass times the proper accelera-
tion α. The classical relation F ' dp/dt ' mdv/dt =
md2x/dt2 = ma then becomes:

F = γ⊥
dp‖
dt

= mγ⊥
dw‖
dt

= mγ⊥
d(γv‖)

dt

= m
γ3

γ⊥

dv‖
dt

= m
γ3

γ⊥

d2x‖
dt2

= m
γ3

γ⊥
a = mα (7)

Even though the rate of momentum change joins the rate
of energy change in becoming frame-dependent at high
speed, Newton’s 2nd Law for 3-vectors thus retains a
frame-invariant form.

Although they depend on the observer’s inertial frame,
it is instructive to write out the components of momen-
tum and energy rate-of-change in terms of proper force
magnitude F . The classical equation relating rates of mo-
mentum change to force is d−→p /dt ' −→F ' ma

−→
i‖ , where

−→
i‖ is the unit vector in the direction of acceleration. This
becomes

d−→p
dt

= F

[(
1

γ⊥

)
−→
i‖ +

(γ⊥v⊥
c

v‖
c

)−→
i⊥

]
. (8)

Note that if there are non-zero components of velocity in
directions both parallel and perpendicular to the direction
of acceleration, then momentum changes are seen to have
a component perpendicular to the acceleration direction,
as well as parallel to it. These transverse momentum
changes result because transverse proper velocity w⊥ =
γv⊥ (and hence momentum p⊥) changes when traveler γ
changes, even though v⊥ is staying constant.

As mentioned above, the rate at which traveler energy
increases with time classically depends on traveler ve-
locity through the relation dE/dt ' Fv‖ ' m(−→a • −→v ).
Relativistically, this becomes

1

γ⊥

dE

dt
= Fv‖ = m (−→α • −→v ) . (9)

Hence the rate of traveler energy increase is in form very
similar to that in the classical case.

Similarly, the classical relationship between work,
force, and impulse can be summarized with the relation
dE/dx‖ ' −→F ' dp‖/dt. Relativistically, this becomes
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1

γ⊥

dE

dx‖
= F = γ⊥

dp‖
dt

. (10)

Once again, save for some changes in scaling associated
with the “transverse time-speed” constant γ⊥, the form
of the classical relationship between work, force, and im-
pulse is preserved in the relativistic case. Since these
simple connections are a result, and not the reason, for
our introduction of proper time/velocity in context of a
single inertial frame, we suspect that they provide insight
into relations that are true both classically and relativis-
tically, and thus are benefits of “type B” discussed in the
introduction.

The development above is of course too complicated
for an introductory class. However, for the case of uni-
directional motion, and constant acceleration from rest,
the Newtonian equations have exact relativistic analogs
except for the changed functional dependence of kinetic
energy on velocity. These equations are summarized in
Table II.

B. Classroom applications of relativistic acceleration
and force.

In order to visualize the relationships defined by equa-
tion 6, it is helpful to plot for the (1+1)D or γ⊥ = 1 case
all velocities and times versus x in dimensionless form
from a common origin on a single graph (i.e. as v/c,
ατ/c, w/c = αt/c, and γ versus αx/c2). As shown in
Fig. 1, v/c is asymptotic to 1, ατ/c is exponential for
large arguments, w/c = αt/c are hyperbolic, and also
tangent to a linear γ for large arguments. The equations
underlying this plot, from 6 for γ⊥ = 1 and coordinates
sharing a common origin, can be written simply as:

αx

c2
+ 1 =

√
1 +

(
αt

c

)2

= cosh
[ατ
c

]

= γ =
1√

1−
(
v
c

)2 =

√
1 +

(w
c

)2

. (11)

This universal acceleration plot, adapted to the relevant
range of variables, can be used to illustrate the solution
of, and possibly to graphically solve, any constant ac-
celeration problem. Similar plots can be constructed for
more complicated trips (e.g. accelerated twin-paradox
adventures) and for the (3+1)D case as well10.

With plots of this sort, high school students can solve
relativistic acceleration problems with no equations at
all! For example, consider constant acceleration from
rest at α = 1 [earth gravity] ' 1 [ly/yr2] over a distance
of 4 [lightyears]. One can read directly from Fig.1 by
drawing a line up from 4 on the x-axis that γ ' 5, final
proper-speed w ' 4.8 [ly/tyr], map-time t ' 4.8 [yr],
proper-time elapsed τ ' 2.3 [yr], and final coordinate-
speed v ' 1 [c]. Problems with most initial value sets

can be solved similarly, without equations, on such a plot
with help from a straight edge and a bit of trial and
error. Of course, the range of variables involved must be
reflected in the ranges of the plot. For this reason, it may
also prove helpful to replot Fig.1 on a logarithmic scale.
As you can see here, in the classical limit when w << 1
[ly/tyr], all variables except γ (dimensionless times and
velocities alike) take on the same value as a function of
distance traveled from rest!

For a numerical example, imagine trying to predict
how far one might travel by accelerating at one earth
gravity for a fixed traveler-time, and then turning your
thrusters around and decelerating for the same traveler-
time until you are once more at rest in your starting or
“map” frame. To be specific, consider the 14.2 proper-
year first half of such a trip all the way to the An-
dromeda galaxy12, one of the most distant (and largest)
objects visible to the naked eye. From equation 6, the
maximum (final) rapidity is simply η‖ = ατ/c = 14.7.
Hence the final proper velocity is w = sinh(ατ/c) =
1.2 × 106ly/tyr. From equation 2 this means that γ =√

1 + (w/c)2 = 1.2 × 106, and the coordinate velocity

v = w/
√

1 + (w/c)2 = 0.99999999999963ly/yr. Go-
ing back to equation 6, this means that coordinate time
elapsed is t = w/αc = 1.1× 106years, and distance trav-
eled x = (γ − 1)c2/α = 1.1× 106ly. Few might imagine,
from typical intro-physics treatments of relativity, that
one could travel over a million lightyears in less than 15
years on the traveler’s clock!

From equation 5, the coordinate acceleration falls from
1gee at the start of the leg to a = α/γ3 = 6×10−19gee at
maximum speed. The forces, energies, and momenta of
course depend on the spacecraft’s mass. At any given
point along the trajectory from the equations above,
F is of course just mα, dE/dx is γ⊥F = F , dp/dt is
F/γ⊥ = F , and dE/dt is γ⊥Fv‖ = Fv. Note that all
except the last of these are constant if mass is constant,
albeit dependent on the reference frame chosen. How-
ever, the 4-vector components dp/dτ and dE/dτ are not
constant at all, showing in another way the pervasive
frame-dependences mentioned above.

The foregoing solution may seem routine, as well it
should be. It is not. Note that it was implemented using
distances measured (and concepts defined) in context of
a single map frame. Moreover, the 3-vector forces and
accelerations used and calculated have frame-invariant
components, i.e. those particular parameters are correct
in context of all inertial frames.

The mass of the ship in the problem above may vary
with time. For example, if the spacecraft is propelled by
ejecting particles at velocity u opposite to the acceler-
ation direction, the force felt in the frame of the trav-
eler will be simply mα = −udm/dτ . Hence in terms of
traveler time the mass obeys m = mo exp[−ατ/u]. In
terms of coordinate time, the differential equation be-
comes mα = −uγdm/dt. This can be solved to get the
solution derived with significantly more trouble in the
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reference above12.

IV. PROBLEMS INVOLVING MORE THAN ONE
MAP.

The foregoing sections treat calculations made possi-
ble, and analogies with classical forms which result, if one
introduces the proper time/velocity variables in the con-
text of a single map frame. What happens when multiple
map-frames are required? In particular, are the Lorentz
transform and other multi-map relations similarly sim-
plified or extended? The answer is yes, although our
insights in this area are limited since the focus of this
paper is introductory physics, and not special relativity.

A. Development of multi-map equations

The Lorentz transform itself is simplified with the help
of proper velocity, in that it can be written in the sym-
metric matrix form:



c∆t′

∆x′

∆y′

∆z′


 =




γ ±w
c

0 0
±w
c

γ 0 0
0 0 1 0
0 0 0 1






c∆t
∆x
∆y
∆z


 . (12)

This seems to be an improvement over the asymmetric
equations normally used, but of course requires a bit of
matrix and 4-vector notation that your students may not
be ready to exploit.

The expression for length contraction, namely L =
Lo/γ, is not changed at all. The developments above
do suggest that the concept of proper length Lo,
as the length of a yardstick in the frame in which
it is at rest, may have broader use as well. The
relativistic Doppler effect expression, given as f =
fo
√
{1 + (v/c)}/{1− (v/c)} in terms of coordinate ve-

locity, also simplifies to f = fo/{γ − (w/c)}. The clas-
sical expression for the Doppler effected frequency of a
wave of velocity vwave from a moving source of frequency
fo is, for comparison, f = fo/{1− (v/vwave)}.

The most noticeable effect of proper velocity, on the
multi-map relationships considered here, involves sim-
plification and symmetrization of the velocity addition
rule. The rule for adding coordinate velocities −→v ′ and
−→v to get relative coordinate velocity −→v ′′, namely v′′‖ =

(v′ + v‖)/(1 + v‖v′/c2) and v′′⊥ 6= v⊥ with subscripts re-
ferring to component orientation with respect to the di-
rection of −→v ′, is inherently complicated. Moreover, for
high speed calculations, the answer is usually uninter-
esting since large coordinate velocities always add up to
something very near to c. By comparison, if one adds
proper velocities −→w ′ = γ′−→v ′ and −→w = γ−→v to get relative
proper velocity −→w ′′, one finds simply that the coordinate
velocity factors add while the γ-factors multiply, i.e.

w′′‖ = γ′γ
(
v′ + v‖

)
,with w′⊥ = w⊥. (13)

Note that the components transverse to the direction of
−→v ′ are unchanged. These equations are summarized for
the unidirectional motion case in Table III.

B. Classroom applications involving more than one
map-frame.

Physically more interesting questions can be answered
with equation 13 than with the coordinate velocity addi-
tion rule commonly given to students. For example, one
might ask what the speed record is for relative proper
velocity between two objects accelerated by man. For
the world record in this particle-based demolition derby,
consider colliding two beams from an accelerator able
to produce particles of known energy for impact onto
a stationary target. From Table I for colliding 50GeV
electrons in the LEP2 accelerator at CERN, γ and γ′

are E/mc2 ' 50GeV/511keV ' 105, v and v′ are essen-
tially c, and w and w′ are hence 105c. Upon collision,
equation 13 tells us that the relative proper speed w′′ is
(105)2(c + c) = 2 × 1010c. Investment in a collider thus
buys a factor of 2γ = 2 × 105 increase in the momen-
tum (and energy) of collision. Compared to the cost of
building a 10PeV accelerator for the equivalent effect on
a stationary target, the collider is a bargain indeed!

V. CONCLUSIONS.

We show in this paper that a one-map two-clock ap-
proach, using both proper and coordinate velocities, lets
students tackle time dilation as well as momentum and
energy conservation problems without having to first
master concepts which arise when considering more than
one inertial frame (like Lorentz transforms, length con-
traction, and frame-dependent simultaneity). The cardi-
nal rule to follow when doing this is simple: All distances
must be defined with respect to a “map” drawn from the
vantage point of a single inertial reference frame.

We show further that a frame-invariant proper accel-
eration 3-vector has three simple integrals of the motion
in terms of these variables. Hence students can speak
of the proper acceleration and force 3-vectors for an ob-
ject in map-independent terms, and solve relativistic con-
stant acceleration problems much as they now do for non-
relativistic problems in introductory courses.

We have provided some examples of the use of these
equations for high school and college introductory physics
classes, as well as summaries of equations for the simple
unidirectional motion case (Tables I, II, and III). In the
process, one can see that the approach does more than
“superficially preserve classical forms”. Not just one, but
many, classical expressions take on relativistic form with
only minor change. In addition, interesting physics is
accessible to students more quickly with the equations
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that result. The relativistic addition rule for proper ve-
locities is a special case of the latter in point. Hence we
argue that the trend in the pedagogical literature, away
from relativistic masses and toward use of proper time
and velocity in combination, may be a robust one which
provides: (B) deeper insight, as well as (A) more value
from lessons first-taught.
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APPENDIX A: THE 4-VECTOR PERSPECTIVE

This appendix provides a more elegant view of mat-
ters discussed in the body of this paper by using space-
time 4-vectors not used there, along with some promised
derivations. We postulate first that: (i) displacements
between events in space and time may be described by a
displacement 4-vector X for which the time–component
may be put into distance-units by multiplying by the
speed of light c; (ii) subtracting the sum of squares of
space-related components of any 4-vector from the time
component squared yields a scalar “dot-product” which is
frame-invariant, i.e. which has a value which is the same
for all inertial observers; and (iii) translational momen-
tum and energy, two physical quantities which are con-
served in the absence of external intervention, are compo-
nents of the momentum-energy 4-vector P ≡m dX

dτ , where
m is the object’s rest mass and τ is the frame-invariant
displacement in time-units along its trajectory.

From above, the 4-vector displacement between two
events in space-time is described in terms of the position
and time coordinate values for those two events, and can
be written as:

∆X ≡



c∆t
∆x
∆y
∆z


 . (A1)

Here the usual ∆-notation is used to represent the value
of final minus initial. The dot-product of the displace-
ment 4-vector is defined as the square of the frame-
invariant proper-time interval between those two events.
In other words,

(c∆τ )2 ≡ ∆X •∆X

= (c∆t)2 − (∆x2 + ∆y2 + ∆z2). (A2)

Since this dot-product can be positive or negative, proper
time intervals can be real (time-like) or imaginary (space-
like). It is easy to rearrange this equation for the case
when the displacement is infinitesimal, to confirm the
first two equalities in equation 2 via:

γ ≡ dt

dτ
=

√
1 +

(
dx

dτ

)2

=
1√

1−
(
dx
dt

)2 . (A3)

The momentum-energy 4-vector, as mentioned above,
is then written using γ and the components of proper

velocity −→w ≡ d−→x
dτ as:

P ≡ mU = m



cγ
wx
wy
wz


 =




E
c
px
py
pz


 . (A4)

Here we’ve also taken the liberty to use a velocity 4-
vector U ≡ dX/dτ . The equality in equation 2 between
γ and E/mc2 follows immediately. The frame-invariant
dot-product of this 4-vector, times c squared, yields the
familiar relativistic relation between total energy E, mo-
mentum p, and frame-invariant rest mass-energy mc2:

c2P •P =
(
mc2

)2
= E2 − (cp)

2
. (A5)

If we define kinetic energy as the difference between rest
mass-energy and total energy using K ≡ E −mc2, then
the last equality in equation 2 follows as well. Another
useful relation which follows is the relation between in-
finitesimal uncertainties, namely dE

dp
= dx

dt
.

Lastly, the force-power 4-vector may be defined as the
proper time derivative of the momentum-energy 4-vector,
i.e.:

F ≡ dP

dτ
≡ mA = m




cdγ
dτ
dwx
dτ
dwy
dτ
dwz
dτ


 =




1
c
dE
dτ

dpx
dτ
dpy
dτ
dpz
dτ


 . (A6)

Here we’ve taken the liberty to define acceleration 4-
vector A ≡ d2X/dτ 2 as well.

The dot-product of the force-power 4-vector is always
negative. It may therefore be used to define the frame-
invariant proper acceleration α, by writing:

F • F ≡ − (mα)2 =

(
1

c

dE

dτ

)2

−
(
dp

dτ

)2

. (A7)

We still must show that this frame-invariant proper ac-
celeration has the magnitude specified in the text (eqn.
5). To relate proper acceleration α to coordinate acceler-

ation −→a ≡ d−→v
dt ≡ d2−→x

dt2 , note first that c dγdτ = γ4 v‖
c a, that

dw‖
dτ

= γ4

γ2
⊥
a, and that dw⊥

dτ
= γ3 v⊥

c

v‖
c
a. Putting these re-

sults into the dot-product expression for the fourth term

in A6 and simplifying yields α2 = γ6

γ2
⊥
a2 as required.
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As mentioned in the text, power is classically frame-
dependent, but frame-dependence for the components
of momentum change only asserts itself at high speed.
This is best illustrated by writing out the force
4-vector components for a trajectory with constant
proper acceleration, in terms of frame-invariant proper
time/acceleration variables τ and α. If we consider sep-
arately the momentum-change components parallel and
perpendicular to the unchanging and frame-independent
acceleration 3-vector −→α , one gets

F =




1
c
dE
dτ
dp‖
dτ
dp⊥
dτ
0


 = mα




γ⊥ sinh
[
ατ
c

+ ηo
]

cosh
[
ατ
c

+ ηo
]

γ⊥
v⊥
c sinh

[
ατ
c + ηo

]

0


 , (A8)

where ηo is simply the initial value for η‖ ≡ sinh−1[
w‖
c ].

The force responsible for motion, as distinct from the
frame-dependent rates of momentum change described
above, is that seen by the accelerated object itself. As
equation A8 shows for τ, v⊥ and ηo set to zero, this is
nothing more than

−→
F ≡ m−→α . Thus some utility for the

rapidity/proper time integral of the equations of constant
proper acceleration (3rd term in eqn. 6) is illustrated as
well.

1 e.g. A. P. French, Special Relativity (W. W. Norton, NY,
1968), p.22.

2 e.g. F. J. Blatt, Modern Physics (McGraw-Hill, NY, 1992).
3 C. G. Adler, Does mass really depend on velocity, dad?,

Amer. J. Physics 55 (1987) 739-743.
4 H. Goldstein, Classical Mechanics, 7th printing (Addison-

Wesley, Reading MA, 1965), p. 205.
5 Sears and Brehme, Introduction to the Theory of Relativity

(Addison-Wesley, NY, 1968).
6 W. A. Shurcliff, Special Relativity: The Central Ideas (19

Appleton St., Cambridge MA 02138, 1996).
7 J. A. Winnie, “Special relativity without one-way velocity

assumptions, Part I and II”, Philos. Sci. 37 (1970) 81-99
and 223-228.

8 A. A. Ungar, “Formalism to deal with Reichenbach’s spe-
cial theory of relativity”, Found. Phys. 21 (1991) 691-726.

9 A. A. Ungar, “Gyrogroup axioms for the abstract Thomas
precession and their use in relativistic physics and hyper-
bolic geometry”, Found. Phys. submitted (1996).

10 P. Fraundorf, “Non-coordinate time/velocity pairs in spe-
cial relativity”, gr-qc/9607038 (xxx.lanl.gov archive, NM,
1996).

11 E. Taylor and J. A. Wheeler, Spacetime Physics, 1st edition
(W. H. Freeman, San Francisco, 1963).

12 C. Lagoute and E. Davoust, “The interstellar traveler”,
Am. J. Phys. 63 (1995) 221.

8

http://arXiv.org/abs/gr-qc/9607038


Equation\ Version: classical (c→∞) two-clock relativity

speed of map-time γ ≡ dt
dτ ' 1 γ ≡ dt

dτ = 1√
1−( vc )2

=

√
1 +

(
w
c

)2

time dilation none ∆t = γ∆τ

coordinate velocity −→v ≡ d−→x
dt

−→v ≡ d−→x
dt

=
−→w√

1+(wc )2

proper velocity same as coordinate −→w ≡ d−→x
dτ = γ−→v

momentum −→p 'm−→v −→p = m−→w
kinetic energy K ' 1

2
mv2 ' p2

2m
K = mc2 (γ − 1) ≡ E −mc2

total energy mc2 +K not considered E = γmc2 =
√

(pc)2 + (mc2)2

TABLE I. Equations involving velocities, times, momentum and energy, in classical and two-clock relativistic form.

Equation\ Version: classical (c→∞) two-clock relativity

coordinate acceleration a ≡ dv
dt

a ≡ dv
dt

“felt” or proper acceleration same as coordinate α = dw
dt = γ3a

momentum integral p
m
' at ' v p

m
= αt = w

work-energy integral K
m
' ax ' 1

2
v2 K

m
= αx = c2(γ − 1)

proper-time integral same as momentum ατ = c sinh−1
(
w
c

)

force, work & impulse F ' ma ' dE
dx

= dp
dt

F = mα = dE
dx

= dp
dt

TABLE II. Unidirectional motion equations involving constant acceleration from rest, and “2nd law” dynamics, in classical
and two-clock relativistic form.

Equation\ Version: classical (c→∞) two-clock relativity

frame transformation x′ ' x ± vt; t′ ' t x′ = γx± wt; t′ = γt± wx/c2

length contraction none L = Lo/γ

moving-source Doppler-shift f ' fsource
1±v/vwave (any wave) f = fsource

γ±w/c (light)

velocity addition vac ' vab + vbc wac ' γabγbc(vab + vbc)

TABLE III. Unidirectional motion equations involving distances measured using more than one map-frame, in classical and
two-clock relativistic form.
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FIG. 1. The variables involved in (1+1)D constant acceleration
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