5. Quantum mechanics in one dimension

Schrodinger’ s equation is the analogue to the wave

. . Ty_1Ty
equation of sound, light, water, NCIRRVEI T , which works
for al classical waves, that have either a photon associated with
It or a pseudo-particle (such as a phonon)

harmonic wave, plane wave is solution to this
eguation moving to the right

y(X,t) = Yo cos 2 p (*/- - /1) = yo cos %/, (x — vit) wherev = 7y

these functions describe something with physical
significance, e.g. the E vector, the amplitude on a water
wave, the air pressure in a sound wave

the sguare of that function y(x,t)>~ 2 energy per unit
volume, intensity (1) of wavesis energy density times wave
speed, so | ~ y(x,t)*~ ? can be put down to number of
photons (or pseudo-particles) at anyone place at a certain
time, isalso the likelihood of finding a photon (or pseudo-
particle) there (x) and then (t)

what we need is something altogether different but
mathematically ssimilar - a wave equation for
matter wave, the solutionsto which, i.e. ? (x,t) -



the matter waves - will bea valid description of
how “small” things move —and the squar e of
which ? (x,t)*will give usthe probability of
finding the particle of the matter wave there (x)
and then (t)

? (x,t) contains everything that isand can be
know about the particle, to get the probability of
finding the particle at some specific (x,t) we have
to calculate ? (x,t)° Born’sinterpretation

call the probability that particle will be found in the infinitesimal
small interval dx about the point x P(x), probability density as it
Is per length unit, then Born’s interpretation is

P(x) dx = ? (x,t)* dx will beanumber =1 (attime

y

It isnot possibleto specify with certainty the position
of a particle (x) - Heisenberg's uncertainty principle —
but it ispossibleto assign definitive values of
probabilitiesfor observing it at any place we careto
calculate the square function for (at a given time)

? (x,t)? isintensity of matter wave, a measurable quantity,
while ? (x,t) is only a mathematical model for the matter
wave, a non physical thing, can’'t be measured



Schrodinger’ s equation equivalent to Newton’ s second
law, (Solutionsto Newton’s second law described how
things move at the macroscopic scale!!! Newton' second
law contained the solution of Newton'sfirst law,
Schrodinger equation will contain equivalent to Newton's
firslaw afree particle, plane wave, harmonic wave and
superpositions of plane waves describing a pulse)

Schrodinger developed his equation after his prior attempts to
explain with de Brogli€' s relation the Bohr model at a more
fundamental level failed, a colleague told him one does need a
wave eguation to make progress with waves, so Schrodinger
boned up on the maths and found the one that works for al
matter waves !!!

Partial derivates and complex numbers

suppose we have a function f(x,y) of two variables and want to
know how this function varies with one variable only, say x

we treat the other variable y as a constant and differentiate f(x,y)
with respect to x

result is called a partial derivate and written as

qf _ . df

ﬂX = [&] y=cons

rulesof ordinary differentiation apply



" _ 0
eg. f = f(x,y) = yx° ﬁ_y X asy isa congtant

m_ -

on the other hand ﬂ_y - X as X 1S Now a constant

2
Tt _ 1 .9f
second order partial derivates G - ﬂx['ﬂx] are calculated by

repeating the procedure

2 1°f _ 1
e.g. f =f(x,y) =yx w2 X
again a constant

[y>QX] = y>Q asy IS

application on something more challenging

Ty_17Ty
classical wave equation is ﬂXZ B V2 ﬂtz

for electromagnetic wave, sound wave, standing wave on a
guitar, water wave, wave on avery long string free to travel

solutions of classical wave equation for monochromatic (? =
constant) undamped (A = constant) wave traveling theright is

y(X ,t) — Ae—i?(t-x/v)



now show that y = Ae™” ") jsa solution to the classical wave
eguation

first partial derivate of y with respect to x

Ty _iw
X vV y

ﬂZy _ |2\N2 _ W2
second derivate %2 VR ) V2 y

first partial derivate with respect to t

2
second derivate % =i'wly=-w’y
comparing the second derivates, differenceis just V—lzotherwise
they are identical so

Ty _ 1 9%
0 — V2 qt2 which is the wave equation,

s0 y(x,t) = Ae"” ™) must be a solution to this equation



complex wave functions/ just like complex numbers

? =A+iB, A real part of function
B imaginary part

then?* =A -iB,

(i is replace everywhere by — i and one has the conjugate
complex function)

?2°=72%2 =7 2% = A2_{?B%= A2+ B? isal red
2
1 =-1

the fundamental problem of quantum mechanics

given thewave function at someinstant, say t =0, i.e. ? (x,0), find the
wave function at someor all other timest - when there areforces
acting on the particle

? (x,0) istheinitial information on the particle,

Newton’s mechanics analogue was initial position (X) and momentum
(p) of aclassical particle,

now it isan infinite set of numbers a set of values, for all points x one
value of ? (x,0)



In Newton’ s mechanics we obtain x(t) and p(t) by solving Newton’'s

—

o ~— o = mav .
<econd lay A Fdt=dp,g F =——=ma

dt , an net force acting

on the particle changed it’s momentum, change in position over
Kinematics

Schrodinger’ s equation (SE) propagates ? (x,0)
forward in time,

that’swhat we want to know, given (within

Helsenberg' s uncertainty) we know where a particleis
and what its momentum thereis, we want to calculate
were will be at sometime (t) and what will it’s
momentum be at that time

I.e. the initial ? (x,0) changes into ? (x,t)
2 q2
Y ooy =in®Y
2m qx Mt

du . : :
F=-3 IS the force acting on the particle

U(X) isthe potential energy function of the Force

1. left hand side (LHS) of SE isfirst evaluated for ? (x,0),
l.e. 1t =0, asit isnot dependent on time, i.e. we make
partial derivations and add the influence of the potential
energy function on ? (x,0)



LHS of SE equals right hand side (RHS) of SE result must

be equal to %at t =0, 1.e. initia rate of change of wave
function

2. from %at t =0, RHS of SE, we compute ? (x,dt), the

wave function at an infitesimal small timeinterval (ct)
later by superposition

?(x,dt) = 2 (x.0) + [ Jo

3. that results gets plucked in at LHS of SE again, but now
we evaluate ? (x,dt), i.e. this time make the partial
derivations for ? (x,dt) add the influence of the potential
energy function on ? (x,dt) (just likewe did fort =0, first
step), result is again equal to RHS of SE

4. from %at t = dt, RHS of SE, we compute ? (x,dt,), the

wave function at an infitesimal small time interval (dt,)
later by superposition

2 (x.dt) = 2 (x, dt) + [ - a ot



each such repetition advances ? (x,dt,,) one step in time
dt,forward

until we have the time (t > 0) we want to investigate our
particle again — it can all be done by computer quickly and
numerically

* Somebody could still asks: How does it work?
What mechanism is represented by the wave
function? Nobody has ever found a mechanism
behind the wave function. Nobody can explain
more that we have just discussed. Nobody will give
you an explanation about what isgoing on at a
deeper level. As a matter of fact, we do not have an
Inkling about a basic mechanism from which the
wave function could be derived.” R. P. Feynman, 1971

numerical solutions of Schrodinger equations are fine but
how may one obtain a mathematical expression for ? (x,t)

mathematical procedure called separation of variables,



— - iwt
2 (k=Y (X () =y (X)e
If U(X) potential energy isfunction of x only (not of t) I!!

df (1) _

I =E ()
YO Gy (0= By ()
2m dx

E
WithE=hf=2p if=? 7 S0? = p

we can look at the e'*! factor above which describes
the time dependency if the potential ener gy does not
depend on time— so that time dependency factor is

In equations above, E isthetotal energy, which we can
normalize to be the kinetic energy plus the potential
energy, (if we set rest energy Eo= 0, as areference form
which energy is counted - which we can do arbitrarily)
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dy (x) , 2m

L+ SHE- Uy (=0

rearranged for further use and called, time independent, steady-
state, or stationary Schrodinger equation in one dimensions

If we have an arbitrary potential energy function U(x) there are
no explicit analytical solutions to this equation

Y must be“well behaved” just as? hastoin

order to give sensible results for probabilities, i.e. finite
everywhereincluding +- ¥ , single valued for any x,
continuous,

dy
and “smooth” —which is & must also be continuousand

single valued (the Serway book says here: wherever U(X)
has afinite value, other books say all the time)

— all of them are mathematical conditions, so
called boundary conditions

If we can separ atethe variables,

we also get ? (x,t)*=Y 2, meaning all probabilities we
calculate from ? (x,t) will not depend on time, are static
or stationary
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expansion to three dimensions straightforward

Ty (xv.2)
dx*

Ty (xy.9 ,
dy’

Ty (xy.2) ,
dz*

?_Z—T{E- U(x Y. 2l (%Y.2) =0

consequence at least 3 quantum number s, taking account of the spin
of the electron it will be 4 for electrons confined to bein an atom

let’slook at a free particlein the plane wave
approximation, also called a harmonic wave

free non-relativistic particle means no forceonit F=0= - O;_‘i

no force means no potential energy U(X), and no dependence of
the potential energy ont, as particle isfree, all energy iskinetic
E=1mV

one dimensional time independent SE simplifies to

12



dy (xX) .2m_ nmv° _
> +[h2{ > 1y (x)=0

1om V2 can be rewritten as 2p_m , multiplying within the straight

bracket yields [ (1)°]

p="/ and h:% 0 (%'O)2 = (*/,)*= k* per definition of

wave number

d?y (x)

dx?

+k¥y (x)=0__ for_a_ free_particle

y (x) =¢€"

y (X) = A

y () =¢e™

y (X) = Be '™

y (X) = Ad“ + Be™ most general

are al solution of one dimensional time independent
Schrodinger equation, where A and B are arbitrary constants

(such constants appear generaly in solutions to the SE and we
will define then in the normalization process)

we had



2 =Y (f (1) =y (X)e wt

so in order to get most general solution of time dependent SE

? (x,t) we multiply most general time independent
- iwt

solution Y (X) with time dependence €

? (X,t) — (Aeikx+ Be—ikX)e- th: Aékx- iwt +Be—ikx- th:
Aé(kx-vvt) +Be—i(kx-vvt)

whereisthat free particle? answer: caculate ? (X,t)*

remember any function (be it exponential or sinusoidal) of from
(kx £ ?t) represents atraveling wave

for (kx - ?t) wave istraveling to the right
for (kx +?t) wave is traveling to the left,

lets decide our particle should travel to the right, we can do that
by setting B = 0 in the most general solution

0? (Xt)’=2*? =

Ae—i(kX-Wt) eri(kX-Wt) — AZ )eO — A2 >{|.

so the probability is a constant A% = ? O(X,'[)2 at al places and
times
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2
we may have aswell calculated Y (X)” to find the probability of
finding the particle for any x we want

y (X)°=y (X)'y (x) =
Ae " xAd ™ = AZxe” = A2
Probability
density |y(x) 2

| 0
Fig. 39-11 A plot of the probability
density |4 |2 for a free particle moving
in the positive x direction. Since |12
has the same constant value for all
values of x, the particle has the same
probability of detection at all points
along its path.

analyzing the graph we see that the probability of finding the
particle in any one segment of equal length ?x or dx is
absolutely the same as it is a constant, so the particle has equal
probabilities to be at any place, there is no most likely place
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0 let’ s assume we have a fr ee particle moving to the right,

expressed by wave function, seewhat happensif we put it into Schrédinger
eguation

? (X,t) = Ae™ ™ = Alcoskx - wt) +isin(kx- wt)]
where A is a constant, let’s differentiate partially for x and t and
put our derivates into the time dependent (one dimensional)

Schrodinger equation

W

ek iwAe (™ = _jwy
2
111\(2 = (ik)? At ™ = - kY
X

asitisafree particle, it is not under the influence of aforce, so it
has constant (time and position independent) net potential energy
U(X) = Ug, which may be zero or any other value (remember
potential energy levels can be set arbitrarily)

2 2
A Z +U(X)Y :ihﬂ
2m qx it

plugging our derivatesin

hZ

2m
2111

(- K)Y +U,Y =in(- iw)Y

which we can divide by
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and we get

hk?
——+U,=hw

2m
as we know AW = Etotal =KE+PE

h°k?

so what is 5 with i€ = (*/,)? and p?= ("1 5)? = mA?
h2k2

o = 72M V Is kinetic energy of the free particle moving
to the right QED, formalism makes sense

aslong asthereisno net force, a particle does not
change momentum, and movesin a straight line at
constant speed, uniform linear motion —just the same
for macroscopic particlesis stated in Newton’sfirst
law,

Newton’sfirst law iscontained in, i.e. it isactually a solution
of Newton’s second law, just as harmonic (plane) waveisa
solution of, i.e. is (contained in), Schrodinger’s law

free particle solution can also bewritten as
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? (X,t) = A" = Alcoskx - wt) +isin(kx- wt)]
withE=hf=2p if and?="/,= 2"

? (X,t) =

i(2p|§- 2pft) -izp(ft-li) B _i2p(-Et- Py -i_h(Et- px)

Ae = Ae =Ae ¥ P = Age

2

_p—+U X,t) =
where E= 5 (Xt) = KE + PE

Let’slook again at probability density,
normalization and boundary conditions

normalization:
P(x) dx = ? (x,t)? dx

IS probability that particle will be found in infinitesimal
Interval dx about the point X,

P(x) is called probability density (herein m’also
m?or m>

as probability has to be asingle value at every (x) point
we care to look at to make sense, ? (x,t) and ? (x,t)*have to

18



be single valued and continuous functions (of x and t) to make
sense, in addition, they have to be smooth

general solutions to the Schrodinger equation contain
arbitrary constants which we can arbitrarily assign values
to, so agood ideais to use these constants for
normalization procedures

If we know the particle must be somewhere (within some
length, or area, or volume for which we have precise
values, e.g. X; and X, (X1 < X,) or even infinite values +-
¥ we specify the arbitrary constant so that

Q Y (X,1)°dx =1=100% megn ng the particle does exist
between x; and X, with 100 % certainty at all times

any wave function which satisfied this conditions is said
to be normalized ? (x,t)

If we have such anormalized ? (x,t), we can calculate the
probability of the particles existence between aand b,
where a= x, and b = x, in % by

b
P=QY (x.t)"dx so if we forget to normalize

we have just P ~ probability of finding the particle there
and then, with normalization this becomes a measure in %

19



in all cases Pisjust the area under a curve

| - T
a X b

Figure 5.1 The probability for
a particle to be in the interval
a < x < bis the area under the
curve from a to b of the proba-
bility density function 1'¥(x, #)12.

this sets a strict condition to ? if it isnot only to be a
function that happens to solve the Schrodinger equation,

but also to represent the pilot/guiding/matter wave of a
real particle

the area under the curve hasto befinite so that it can

normalized to be 1 or 100 %, so ? (x,t) hasto go to zero
for x; and x, otherwise ? (x,t)* would not go to zero and

the area under the curve would not be finite

20



example: Bohr radiusin hydrogen atom

o
<

Radial probability
density (10-3 pm-1)
- .

A
0 50 100 150 200 250

Radius (pm)

Fig. 40-18 A plot of the radial probabil-
ity density P(r) for the ground state of
the hydrogen atom. The triangular
marker is located at one Bohr radius
from the origin, and the origin repre-
sents the center of the atom.

boundary conditions must be fulfilled for
? (X,t) torepresent areal particle

21



well behaved functions

? andY must be “well behaved” in order to give sensible
results for probabilities,

I.e. finite everywhere,
single valued for any x (and t),

continuous, i.e. having x (and t) values everywhere
(unless V(X) isinfinite)

dy
and “smooth” —whichis & must also be continuous

wherever U(x) has afinite value

In addition to being a solution of the Schrodinger equation

so boundary conditions and requirements of
normalization will make it possible for us to decide
which solution of Schrddinger equation represent real
particles and which are apurely mathematical construct

22



examplefree* particle’

Probability note that the solution of the
density [y(x) Schrodinger equation that
describes this particle can
not be (easily) normalized, as
the area under the parallel

SR . linereaching from —to +
0 ~infinity isinfinitel!l, that,
Fig. 39-11 A plot of the probability however, was implied by the

density |y |2 for a free particle moving definition above
in the positive x direction. Since |1 |2

has the same constant value for all
values of x, the particle has the same
probability of detection at all points
along its path.

so this wave function does not describe a “real physical”
particle, it is however avery useful starting model for areal
particle as we can construct form such waves by means of
superposition an acceptable model for areal particle, just aswe
did for electromagnetic waves in chapter 4

that real particle will then have a wave function that can
be normalized and the plot of it probability density
function will show a pulse with has finite values at some

region DX, peaking somewhere, and going to zero
everywhere else, especially when x approaches +- infinity

let’slook at the uncertainty principle again,

23



Dx>Dp, » 3 1y,
and apply it to the free particle in the graph above

if the particle is free, no net force acts on it, Newton’s 1% law
states, if there is no net force acting, there is no change in
momentum, so

Dpx =0 which amounts to a violation of the uncertainty

principle, amodel can violate the principle, but not a real
particle, so the free particle described by one plane wave
function (rather that a sum of many plane wave functions) is not
areadl particle

having a free particle described by a pulse will
again mean we have mathematical uncertainties

?xX?k™ 1

?2?77?2t7 1

in the modd that trandlate to real physical uncertainties when we
make a physical interpretation of the model by replacing ?k

D
with == %=L (after de Broglie) and multiplying both sides with

h
h=
s

24



(analogoudly: applying the definitionof ? =2pfand E=hf
(Plank-Einstein equation) gives physical meaning to ?? 2t~ 1)
so we don't violate with the mathematical model for the
pulse/wave bundle/wave packet Heisenberg' s uncertainty
principle and this describes areal particle,

in addition, the area under a pulse will of course be finite, so we
can normalize our wave function

Expectation values and Operators

the solutions to the Schrodinger equation contain everything that
can be known (i.e. which the uncertainty principle allows us to
know) about the movement of an entity that is awave-particle
with mass

so lets extract the (arithmetic) mean position —which is also
called the expectation value, (your book states here incorrectly
the average position, an average does not refer to a
distribution/population but the arithmetic mean does),

x=13 f
-8 fx

where f is the dimensionless frequency of occurrence of one
particular value of x

(forget about p 215 lower half and p 216 top paragraph, | am
pretty sure that isincorrect as | did not find a ssmilar Modern
Physics treatment in Beiser and Tipler

25



short maths into

If the “sample of x values’ is large the mean of these values may
be taken as an estimate of the distribution/population mean

the sum of all discrepancies form the mean is zero
a(x-x=0
i=1

the variance of the mean

2 1

= f(x - X)?
=8 f(x- %)

Qo

for large n, one can approximate n with n-1 and use the variance
of the population

1 4 .
a f.(x - m?as ameasure of variance of

1¢
var() =3 f,(x - m’ >~
i=1 Tt

the sample

standard deviation (S) is the square root of the variance and
another measure of the amount of scatter in the data

if s = 0then var(x) = 0, there is no spread in the data and the
distribution is called sharp
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the uncertainly principle now tells us that particle positions (x)
can only been know with probabilities, i.e. its distribution is
never sharp and always fuzzy

back to the expectation value, <x>

¥

<X>= XY (X, 1) Y (x,t)dx where ? (x,t) hasto be
-¥

normalized
definition
the arithmetic mean of x that would be expected from
measurements of the positions of alarge number of
particles with the same wave function!

don’t confuse with probability of finding a particle in an
infinitessmal interval around x — it’'s completely different things,
so P = 0 may be compatible with afinite expectation value <x>

e.g. for an infinite square well and even quantum number wave

functions; P(/,) = 0, but <x> = “/,because ? 2and dsoY Zare
symmetric about that point

to calculate we have the definition of the expectation value <x>
¥

<x>= Oy ()*y (X)dx
- ¥

we need normalized wave functions, and they are
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yn: _Sn—1 n21,2,3,...

asthereisnoi(s) -1, the conjugate complex function has the
same form and the Y 2are smply
2 2 NPX

2 .
=—9n°——, n=123...
Yn . ] 1,

so the integral becomes

¥

R 2 L . npX,,. npx
< X>= X)*y (X)dx=— X(sin—-)(sn—)dx
_S)Xy()y() LQ( L)( I_)
. 2NpX 2npXx
2 L . ,npx 2 xz  XSN( |_) co( L)L
<x>:—Qx>sm ——dx=—[—- - lo
L L L™ 4 4np g(P.y?
L L

sincesin (np) =0, cos (2np) =1 and cos 0 = 1, for al values of n
the expectation value of x is

2 . L
L 4" 2
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in al gquantum states, the arithmetic mean position of the particle
Isin the middle of the box
for n=2,4,6 the“average’ position isaso “/,and this has

nothing to do with Y °=0 the probability density of finding the
particle there

4
‘.“\f .

@ (b)

Figure 5.11 The first three allowed stationary states for a particle confined to a one-
dimensional box. (a) The wavefunctions for n = 1, 2, and 3. (b) The probability distri-
butions for n = 1, 2, and 3.

now the expectation value of any function of x can be

calculated the same way
¥

< f(x)>= of (X)Y (X, t)* Y (x,t)dx
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so f(X) can be potentia energy U(x) for example

however no function p = p(x) exist by virtue of the uncertainty
principle, ?px ?X =% If both of these entities vary in afuzzy
way there smply can’'t be arelation between the two of them
(there is ssimply no classical path in quantum mechanics)

P = mv but p ? p(x) in quantum mechanics

there is the same problem with expectation value of E, athereis
an uncertainty principle aswell ?7E ?t :g only if we are

considering a stationary state, i.e. when there is no time
dependency and no ?t, no such uncertainty, we will have sharp
values for energy

so what we need here are operators

operator is a mathematical concept telling us what to do with the
operand that follows it

e.g. (.ﬁl) (x*t) means that one has to take the partial x
I X

h
derivate of the function (x*t) and multiply it with 7

RNy 2y
SO (I_ﬁ) (X t) =3 X2xt
what is (iﬁﬂ—“x) (cosx) =-() sinx
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entities for which we have operators are called observables as
they have physical meaning and can be observed (although
subject to the uncertainty principle)

nv, .
now (i_ﬁ) isactually the momentum operator [p] that
gives usthe expectation value of the momentum <p>

¥
N\ h 1-[
—
sP>= ¥OY (x.1) i 9x Y (x 1)dx note that the order
of factorsisimportant, thereis only one way of
doing it correctly

similarly
¥

<p*>= QY (X o2 L2 Y( 1)} dX
v I Ix 1

first one operator isapplied to its operand yielding the

operand for the second operator (which will again stand to
the right of the operator)

for example: calculate the expectation value <p> for the ground
state wave function in the infinite square well,
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we know it is a stationary state (standing wave) so it istime
Independent, we know the particle is trapped inthe well, so it is
never outside, so we can restrict the integral to the well

the (normalized and time independent) wave function for that
state isy = \/:sm— as there are no i(s) in it the conjugate

complex of that functionsy * isaso \fs.n_

h Al
o <P>= ?\f )(I—ﬂ)\fsn( —)dx

p>—ﬁ——(§l (px)cos( )dx 0

smplifiesto

thisis of course because sin x = 0 at the nodes!!

S0 the expectation value <p> is zero, what does it mean, ssmply
the particleisjust as likely moving to the right as it is moving to
the left, the arithmetic mean mugt, thus, give zero

generally operators are written in sharp straight brackets, i.e. [p]
or with a“caret”, i.e. P

as there are many more observables, entities with physical
meaning that are allowed to be known by the uncertainty
principle, there are many more operators that give us expectation
values of these observables
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1l
total energy operator [E] = 'hﬁ

Kinetic energy operator non relativistic

<p>2_1212_ hZ ﬂZ

KEI= om  2m'i fx 2m x>

Potential energy operator [(PE)] = [U] = U(X)

now let’s see if everything is consistent with the Schrodinger
eguation

E=KE+U so we must dso have [E] = [KE] +[U]

. ﬂ _ hZ ﬂZ
that is equivalent to 'hﬁ =" %ﬁJrU

now we multiply both sideswith Y (it has to come from the left
as these “guys’ are operator9

2 q2
LY BT

| =- +U (X)Y
andget  qit 2m qx? (x)

SO postulating both
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[E] =gy
h
[Pl= qx

IS equivalent to postulating the Schrodinger equation !

now notice the operators of kinetic and potential energy are only
involving spatial coordinate x, we can define a combined
operator for the total energy that also involves only the spatid
coordinate X, thisis call the Hamiltonian operator [H]

hZ 1‘|’2
[HI =" 2m %2

+U

sum of kinetic and potential energy operator must also be tota
energy operator that involves only time coordinate (t)

.
Ezlhﬁ

so we have actually two total energy operatorsand if they
operate on the same wave function, the must yield the same

observable expectation value !! again multiplying with Y yields

[H]Y =[E]Y



the “pretty compact” version of the Schrédinger equation

Eigenvalues and Eigenfunctions

for smplicity we deal here only with time independent wave
functions, if something is in a steady state the uncertainty

principle ?E ?t = g does not apply, thereis all thetimein the

world, so the energy has settled into a stationary state an exact
value, it is only when it jumps between stationary states that
thereisa ?t again, and with it an uncertainty of energy that
shows up in awidths of a spectra line

“eigen” is German and means self, so what is meant here is
combinations of real numbers (values) and functions that are
equivalent to the action of an operator on these functions.

(if you know about systems of linear equations and matrix representation, you
have the very same things, combinations of vectors with values that are “ self”
solutions to the problem, was invented in Gottingen by Jordan and Hilbert, who
told Born und Heisenberg about it, ...)

mathematical definition [G]? , = g,? , where

e.g. operator d > has eigen functiony =€
what is the el genval ue to this functions and operator

2
d_2er — i(i er — i ZeZX — 4eZX
dx dx " dx dx
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as the eigen function wasjust € the (generally real) number 4 is

for that function exactly equivalent to the operator o

back to physics

eigenfuctions are here again solutions to the Schrddinger
eguation, we deal only with time independent form if we are
looking at stationary states such as in the case of a particlein a
box we get sharp values for certain operators such as the total
energy operator, so there is no expectation value for energy as
there is no arithmetic mean of measurements on many identical
particles, if we are dealing with an eigenval ue/eigenvector
problem the eigenvalue is just one value, e.g. a definitive energy
for every eigenfunction, , eigenfunction and elgenvectors are
refereeing to a set of quantum numbers that are integers

from particle in an infinite square well, you know, energy
comesonly in discrete values, E,, these arethe

eigenvaluesto the eigenfunctionsy

so time independent Schrodinger equation can be
written most compactly

[H]Y n=EY .

for correct description of atoms we will have a second set of eigenvalues and
eigenfuctions, because angular momentum isin nature also quantized not only

energy, so there will be another quantum number actually there will be two more sets
of eigenfunctions and eigenvalues as a state of an electron in an atomis described by 4 quantum
numbers

36



Model: Particlein a box with infinitely large
potential barriers, infinite square well

infinite barriers, the particle is always confined, never outside

exercise: deriving form of the wave function under the boundary
conditions

it's a stationary state, so we use time independent Schrodinger
eguation

d¥ (x) , 2m

oz Tz E- UKy (=0

oY (X) =0 outside the box

inside box U(x) =0

dYy (9, 2mEy () __dY (9, 12
dx? 72 dx*

solutions of this ordinary partial equation are sin kx and cos kx
so most general solution is

y (X) = Asinkx + B coskx inside the box 0 < x <L
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how about x=0=L"7

well interior wave must match exterior wave to be continuous

dy
everywhere, but the slope dx IS not continuous, so it isnot ared

physical situation, just a model that may approximate areal
physical situation pretty well

SO interior wave must vanish at x and L
we can obtain this by setting
y (0)=B=0___ for_x=0  sothecosine hermisgone

y (L)=AsnkL=0__ for_x=L this requires kL=np
wherenis1,2,3, ...

because k = %/, this is equivalent to fitting an integer number
of half-wave length into the box

using k ="/

and remembering that

dvy (X) N 2mEy (x) —0= d% (X) +k%y (X)
dX2 hz dX2 was

our starting point
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we find that the particles energy is quantized
h2k2 n2h2
" 2m  8ml?

just the same result aswe obtained in Chapter 4 from
nodes of standing wave conditions

A

(@ (b)
Figure 5.11 The first three allowed stationary states for a particle confined to a one-

dimensional box. (a) The wavefunctions for n = 1, 2, and 3. (b) The probability distri-
butions for » = 1, 2, and 3.

looking at ¥ 1(X)” there are places besides the walls (x and L)
where the particle can never be found!!!

2
forY 2(X)” the particleis never at ¥, L
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2
for Y 3(X)° the particle is never at Y/zand %5 L

how does the particle get over these points ?77? well
It’ s particle-wave duality not just a particle of which
we have an intuitive idea how it is supposed to move
— something we can’t grasp with or brain having
evolved over time looking only at classical
phenomena— and of course, there is no path the
wave-particle could follow

2
so far we only looked a Y n(X)” to make calculationsof actual
probabilities, we need to normalize the wave functions

P= Qy (x)?dx=1= AZQsm (—)dx

there is a trigonometric identity: 2sin° T = 1 —cos2T so we get

2npx

1= A2©5|n (npx)dx Azlgl cos(——)dx

2ox X
now cos |~ integratesto sn T~ whichiszeroax =0

andx =L
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(j)dx IsjustL —0=L

sol=", from which we get the normalization factor

our wave functions ready to be evaluated for probability
densities in % are, thus,

npx
Yn (X) \/78”1( withn=1, 2,3, ...

one mor e thing on theinfinite square well
the lowest energy stateisgivenby n=1

what would happenisn=0"?

dy (9 _

dx?  istobesolved !

solution is wave function
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y (inside_box) = Ax+B

this wave function has to be zero at x and L, this requires both A
and B to be zero

y (inside__box) = Ax+ B =0_ everywherel!!!

iIswe look at the probability of finding this particle
@LY (x,t)°dx =0=0% =there_is_no_such_particle

son=0and E =0 arenot possible !'!

returning to wave function for particle in infinitely deep
box / infinite square well

y r,(x):Asinn—EX

for each of the quantum numbers, 1, 2, 3, ... thereis a specific
wave function describing everything that is permitted to be
known by the uncertainty principle

onelast thing on theinfinite square well

with assuming impenetrable walls of infinite height,
we actually violated one of the boundary conditions
for physical meaningful wave functions:
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derivates of wave function with respect to space

. o Ty(xt) Ty (x) _ay
coordinates (X,y,2), i.e. o O Tqx  gx Must

be continuous, this means slopes must be continuous

In the infinite square well model, the wave functions
just “kind of stopped” at the walls, analogous to a
classical wave on astring of a guitar, that would stop
and get reflected back making up the standing wave
— making music ...

but the real world is different on a quantum level, if
It isto be aredl particlethat is represented by a
solution to the Schrodinger eguation, the slope has to
be continuous, so areal particle-wave does not stop
at any barrier, it dways “leaks’ into the barrier, and
If the barrier is not infinitely thick (which it never
realy isin the real world either) the particle has a
probability to be found outside the well, when it has
“tunneled” through the barrier (asit didn’t have
enough energy to go over the top of the wall)

0 let’ s sum up:
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IN nature, there are no infinite potentials ener gy
walls, so we should consider an alternative model,

finite square well, particle in a box with finite
wall heights

(of either infinite thickness or finite thickness, again there are no
walls of infinite thickness, but we modify our model one thing at
atime)

(a) (b)

Figure 5.13 (a) Wavefunctions for the lowest three energy states for a particle ina
potential well of finite height. (b) Probability densities for the lowest three energy
states for a particle in a potential well of finite height.

If it has sufficient kinetic energy, classical particle can go over
the top of afinite wall and move freely outside, but with reduced



speed corresponding to the diminished total energy kinetic
energy KE=E-PEEE-U>0

but if total E is smaller than the height of the potential energy
walls of the wdll, i.e. E-PE = E-U < O, there is no kinetic energy
left to roam freely, so classical particle can’t be outside the wall
and moving, it istrapped forever in0<x <L

|n quantum mechanics, because of the condition

TY (x,1) Ty (x) _ dy . .
ax O ax ax must be continuous, i.e.

slopes must be continuous,

a particle leaks out into the potential walls!!!

Thisisbecause ? isnever zero outside the well, so
the probability of finding the particle there ? * is not
zero ether, so the particle is actually there !!!

so letslook at the parts of the wave function that
penetrated into potential walls

solutions to the (time independent) Schrédinger equation

Yy, (X)=Ce” for x <0, section I, where C is a constant we can
use for fit to the second segment
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Y (X)=De™ for x > L, section 111, where D is a constant we
can use for fit to the second segment

2mU - E)
hZ
in the well and some positive value outside the well

and a = IS a positive constant, as U is taken to be zero

so we have an exponential decay, that's pretty fast,
from of the constant a, we can see that the heavier the particleis
and/or the larger the difference U —E, (i.e. the larger — KE of

the bound state) the faster Y (X) decaysin the walls, if the walls
are infinitely wide, the wave function decays to zero

general solution for region 11 is

. N 2mE 2mE
Yy, (X)=Asn - X+ Bcos - X asU(x) = 0in
the wdll
52mE
and k= ——— asusud

h
but as sin (0) = 0 we have to set A = 0 and can only use the
second part with “cos’ functions

that “cos’ function’ has to match with the functions for section |
and I1l at x =0 and L and itsfirst derivate with respect to x has
to match as well (smoothness condition of wave functions that
describesrea particles) for x =0 and L
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this can only be achieved for certain energy levels E, which are
all smaller that their counterparts from the infinite square well of
the same widths

21,2 2142
[ infinite_square_well _ h°K® _ n°h

" 2m  8mlL?

1 max
example say we haven=1and Y u(l—):?’ ey athe
wall is only haf the maximal value of this function at the center

so we can say coskL =/,

kL = 60° ="P/3

\J2ME

k="Fy k = - from above, resolved for E;

212 22
E finite_square_well _ p h _ 1°h

L - 18ml2  18mL?

for that particular scenario exactly 2.25 times smaller
due to the particular height and widths of the sguare potential
well, i.e. U and L, that results in the value of the wave function
a L just being half the maximum value (which we have in the
center of the well)

on can also see form the graph that the wavelength that fit into a
finite square well (with leakage into the barriers) are somewhat
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larger than those wavelength that would fit into an infinite
square well of the same widths, larger wavelength correspond
after de Broglie (?="/,) to smaller momenta (p), and momenta

2

are liked to kinetic energy by KE = ;—m
the similarity between finite and infinite square

well is also expressed in the concept of a penetration depth d

. _12 h
per deflnltlond—a N TS

at a distance d beyond each of the well edges the amplitude of
the wave function has fallen to Y/, of its value at the edges, and
approached zero exponentialy, i.e. very very fast beyond d

with that we can make an approximation

2.212
E finite_square_well __ n p h

" ~ 2m(L +2d)?

(which shall be sufficiently
accurate if d << L)

which effectively says that the widths of the well is “extended”
by £d, i.e. atotal of 2 d, and we have the same relation to
calculate the energy levels as we had before for the infinite
square well

now d is dependent on E, see relation above, so solving for

finite uare_well
E _Sq >

; by this approximation will be an iterative process
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semiconductor quantum dots- at last the real thing

Figure 5.8 Wave functions and
probability densities of a particle
in a finite potential well. The
particle has a certain probability
of being found outside the wall.

trap for an electron and aholein a
semiconductor is realized by
embedding a semiconductor entity of
the order of magnitude 10 nm diameter
and with asmaller band gap into a
semiconductor matrix with alarger
band gap

particle in these “wells’ is bound state
of an electron and ahole, if freeit's
called an exciton, if it istrapped it’s
called an excitonic polaron

usual quantum mechanical treatment
with Schrodinger equation, ... applies,
as avery crude approximation it isa
three-dimensional square box with
finite (height and thickness) potentia
energy walls, the matter wave leaks into
the barrier and to some extend tunnels
through it, otherwise a device could not
work

I’ s also called a pseudo-atom as there
are discrete energy level, so there isthe
analogue of spectral lines

guantum dots such as this may be
used in future for new computer
architectures such as gquantum
cellular automata




'f

@® V-dement

O UI-element

surface migration

deposition, surface diffusion,
interdiffusion are random
events, smaller band gap
semiconductor (alloy)
usualy larger lattice
constant, (one way of self-
assembly, resulting in “ cake
with raisins’)

epitaxially grown
guantum dots
compressively strained
and possess random
distribution of atoms ?
ordinarily strained QDs
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over time, atomic ordering as observed by
transmission electron microscopy

Figure 1: (In,Ga)Sb agglomerates in GaSh matrix; (a) [001] planview HRTEM image
which was recorded at 500 °C and after athermal treatment in the electron microscope at
temperatures of the order of magnitude of the growth temperature for several hours, ref.
14, suggesting that the transformed structure of this QD rather than its original sphalerite
prototype structure is thermodynamically stable; (b) <110> cross section Z-contrast
STEM image, showing a QD with atomic ordering in every forth + (002) plane; power
spectraasinserts; ¢) [001] atomic resolution Z-contrast STEM images of structurally
transformed In(As,Sb) QDs in INAs matrix.

(from one of my papers, see web pages, if interested)

5 nm AN : ral

PSU’s new more than $ 1,000,000
microscope, would itself not be
possible without modern physics
and Schrodinger’ s equation,
because design of electromagnetic
lenses is quite involved, ray
optics does not do thejob, it's
too crude an approximation
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Quantum states of Harmonic Oscillator, a very

useful approximation

say a particleisin potential well subject to a linear restoring
force F=KxX  with force constant K

corresponding potential energy isU(x) = %2 K x¥* we had
something like it as amass on a spring, a very long pendulum
with asmall elongation, .... anything that is limited to small
excursions (x) around a stable equilibrium position

near the stable equilibrium position, say x = a, the potential energy can
be approximated by a parabola:

U(X) = U(a) + K (x-a)°
under the condition that the curvature of that parable must match

that of U(X) at the point x = a, this condition isfulfilled if

_ dU
K_ dx2|

a

and U(a) is potential energy in equilibrium position a, which we can of
course define as the zero level from which all potential energies are
measured,

analogously we can use coordinate shift and define a= 0 on the x axis

with these two conventions we have
U(X) = U(a) + ¥K(x-a)°= 0 + ¥2K (x-0)*= ¥K »
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in other words, a particle that is limited to small enough
excursions about a stable equilibrium position approximately
behaves as if it were attached to a string with a force constant
prescribed by the curvature of the true potential at equilibrium

U

R .
| = .

Uy t
Figure 8.18 The potential energy of a diatomic molecule as a function of internuclear distance

now if the oscillation is simple harmonic (asin classical

physics), with angular frequency w= % (don't confuse K - the

force constant with k the wave number) and we can write for the
potential energy

UX) =YK x*=%m 2% x°

and put this potential energy function into the time
Independent Schrédinger equation

dy (x) _ 2m .1
ENCRRY: (Em"’zxz' Bl (X)  aswe are interested in the

stationary states of the system

the kind of wave functions we had so far in this chapter are all for constant potential energy
function, either zero or some finite value for all x, here the potential energy is afunction of X
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—=

x=-A x=4A

x=-A x=+A

x=-A x=+A

s

=

x=-A x=+4

Figure 5,12 The first six harmonic-
oscillator wave functions. The ver-
tical lines show the limits —A and
+A between which a classical os-
cillator with the same energy
would vibrate.

Yo =(

E1: 3/2 h f, E2: 5/2 h f .
E,=(n+,)ht,

ground state, n = 0O, note is a mathematical
consequence

Ph

andEg =% iw=%hf (asocalled

Zero point energy, asitisfor n=0 lowest
guantum number

n=0,1,2,3

so ?E = hf or some multiple of hf,
Planck was right in his 1901 paper !!!

-A=x=A arethe
limitsa classical
oscillator would
have,

in asensethese
limits are barriers
of the potential
well, and thereisa
“lot of leakage”
into these barriers,
soinaclassical picture
the string would get
overstretch so severely
that it may not spring
back

note that even a
classical oscillator
does have a zero
point energy =% h f
because things
never stand still in
nature

U(x)

Figure 5.18 Energy level dia-
gram for the quantum oscillator.
Note that the levels are equally
spaced, with a separation equal
to fiw. The ground state energy

is Eo.




2
that leakage into the barriers is shown below aswell for Y » so

the particle is actually at these positions with certain
probabilities

n=0

Figure 5.19 Probability densities for a few states of the quantum oscillator. The dashed
curves represent the classical probabilities corresponding to the same energies.

for large quantum numbers classical physics (dashed lines) and quantum
physics (curves) give corresponding probabilities of finding the particle

55



Trangtions between states and selection rules

energy levels revealed when system makes transitions,

either to a higher energy state as a result of excitation
(absorption of energy)

or to alower energy state as aresult of relaxation (de-excitation,
emission of energy , if it isan electron thisis usually
electromagnetic radiation)

form classical physics: if acharge qis accelerated, it
radiated electromagnetic radiation, remember that’s how X-rays
are produced, if a charge oscillates, the radiation is of the same
frequency as the oscillation

if we have charged particle (charge g), we define charge density

ra=ay ,*y, this quantity is time independent, stationary
state, i.e. does not radiate, quantum
mechanical explanation of Bohr’s postulate,
let’s say nisthe ground state

with this wave function Y , goes a certain (eigen-value) energy
E,, aslong as the charged particle isin this energy state it does
not radiate, it does neither lose nor gain energy
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say it gained just the right amount of energy to go to an excited
state, this means eigen-value (energy) and wave function elgen-
function change

let’s now consider how the particle returns to the ground state
only if atransition form one wave function (m) to another wave

function (n) is made, the energy changes ?E = E,, —E,, from one
definitive value (excited stationary state, e.g. m) to the other
definitive value (relaxed stationary state, e.g. n), E, > E;,

as wave function for a particle that can make a transition, we
need time dependent wave function ? (x,t), asit is two different

states m and n, we have a superposition

? mn(X,t) =a? m(X,t) + b ?2,(X,1)

initially say a=1, b = 0, electron in excited state, m

whilein transition a< 1, b <1, electron is oscillating
between states

finally a= 0, b = 1, electron in relaxed state, n

we can calculate frequency of this oscillation

expectation value that a particle can be in atransition is
¥

<X>= oY (X,1)* Y (Xt)dX
- ¥
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iIf this expectation value = 0 because the integral is zero, thereis
no transition possible

multiplied with the charge g, we have a dipole moment

¥
q<x>:q9<Ym(x,t)*Yn(x,t)dx that radiates

g<x> =(2qabcos(?mt) OV.*Y .dX) + constant

which we can interpret as the expectation value is oscillating due
to cos function, the frequency of this oscillation

Is the difference of the eigenvalues of the functions divided by h-
bar

Em - En
?m=_ 5 =2pf inotherwords PE=hf

absence of atransition becausetheintegral iszerois
usually described as a selection rule

for harmonic oscillator: ?n =+ 1, so there is no transition
between n=4and n = 2, it isalways one hf that is emitted or
absorbed, just as Plank had to assume in order to make his
radiation formula fit the experimental data

for infinite squarewell ?n=1, 3, 5but not 2, 4 .6

\L - X - X
since, eg. QS n(z%)dxsm(p?)dx =0
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