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5. Quantum mechanics in one dimension 
 
Schrödinger’s equation is the analogue to the wave 

equation of sound, light, water, 2
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, which works 

for all classical waves, that have either a photon associated with 
it or a pseudo-particle (such as a phonon) 
 
harmonic wave, plane wave is solution to this 
equation   moving to the right 
 
y(x,t) = y0 cos 2 p (x/? - t/T) = y0 cos 2p/? (x – vt)           where v = ?/T 

 
these functions describe something with physical 
significance, e.g. the E vector, the amplitude on a water 
wave, the air pressure in a sound wave 
 
the square of that function y(x,t)2 ~ ? energy per unit 
volume, intensity (I) of waves is energy density times wave 
speed, so  I ~ y(x,t)2 ~ ? can be put down to number of 
photons (or pseudo-particles) at anyone place at a certain 
time, is also the likelihood of finding a photon (or pseudo-
particle) there (x) and then (t) 
 
what we need is something altogether different but 
mathematically similar - a wave equation for 
matter wave, the solutions to which, i.e. ? (x,t) - 
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the matter waves - will be a valid description of  
how “small” things move – and the square of 
which ? (x,t)2 will give us the probability of 
finding the particle of the matter wave there (x) 
and then (t)  
 
? (x,t) contains everything that is and can be 
know about the particle, to get the probability of 
finding the particle at some specific (x,t) we have 
to calculate ? (x,t)2    Born’s interpretation  
 
call the probability that particle will be found in the infinitesimal 
small interval dx about the point x P(x), probability density as it 
is per length unit,  then Born’s interpretation is  
 
P(x) dx = ? (x,t)2  dx will be a number = 1 (at time 
t) 
 
it is not possible to specify with certainty the position 
of a particle (x) - Heisenberg’s uncertainty principle – 
but it is possible to assign definitive values of 
probabilities for observing it at any place we care to 
calculate the square function for (at a given time) 
 
? (x,t)2  is intensity of matter wave, a measurable quantity, 
while ? (x,t) is only a mathematical model for the matter 
wave, a non physical thing, can’t be measured
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Schrödinger’s equation equivalent to Newton’s second 
law, (Solutions to Newton’s second law described how 
things move at the macroscopic scale!!! Newton’ second 
law contained the solution of Newton’s first law, 
Schrödinger equation will contain equivalent to Newton’s 
firs law a free particle, plane wave, harmonic wave and 
superpositions of plane waves describing a pulse) 
 
Schrödinger developed his equation after his prior attempts to 
explain with de Broglie’s relation the Bohr model at a more 
fundamental level failed, a colleague told him one does need a 
wave equation to make progress with waves, so Schrödinger 
boned up on the maths and found the one that works for all 
matter waves !!! 
 

Partial derivates and complex numbers 
 
suppose we have a function f(x,y) of two variables and want to 
know how this function varies with one variable only, say x 
 
we treat the other variable y as a constant and differentiate f(x,y) 
with respect to x 
 
result is called a partial derivate and written as 
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rules of ordinary differentiation apply 
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e.g. f = f(x,y) = yx2             xy
x
f
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as y is a constant 

on the other hand
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are calculated by 

repeating the procedure 
 

e.g. f = f(x,y) = yx2             2]2[2
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again a constant 
 
 
application on something more challenging 
 

classical wave equation is  2
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for electromagnetic wave, sound wave, standing wave on a 
guitar, water wave, wave on a very long string free to travel  
 
solutions of classical wave equation for monochromatic (?  = 
constant) undamped (A = constant) wave traveling the right is  
 
y(x,t) = Ae-i?( t-x/v)  
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now show that y = Ae-i? (t-x/v) is a solution to the classical wave 
equation  
 
first partial derivate of y with respect to x  
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first partial derivate with respect to t 
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comparing the second derivates, difference is just 2
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they are identical so  
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which is the wave equation,  

 
so y(x,t) = Ae-i? (t-x/v)  must be a solution to this equation  
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complex wave functions / just like complex numbers 
 
?  = A + iB,                                 A real part of function  
                   B imaginary part  
 
then ? * = A – iB ,   
 
 (i is replace everywhere by – i and one has the conjugate 
complex function)  
 
? 2 = ? * ?  = ?  ? * = A2 – i2 B2 = A2 + B2                 is all real  
           i2 = -1 
 
 
the fundamental problem of quantum mechanics 
 
given the wave function at some instant, say t = 0, i.e. ? (x,0), find the 
wave function at some or all other times t - when there are forces 
acting on the particle  
 
? (x,0) is the initial information on the particle,  
 
Newton’s mechanics analogue was initial position (x) and momentum 
(p) of a classical particle,  
 
now it is an infinite set of numbers a set of values, for all points x one 
value of ? (x,0) 
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in Newton’s mechanics we obtain x(t) and p(t) by solving Newton’s 

second law am
dt

vmd
FpddtF

r
rrrr

=== ∑∑ , , an net force acting 

on the particle changed it’s momentum, change in position over 
kinematics 
 
 
Schrödinger’s equation (SE) propagates ? (x,0) 
forward in time,  
 
that’s what we want to know, given (within 
Heisenberg’s uncertainty) we know where a particle is 
and what its momentum there is, we want to calculate 
were will be at some time (t) and what will it’s 
momentum be at that time 
 
i.e. the initial ? (x,0) changes into ? (x,t) 
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F = dx
dU

−  is the force acting on the particle 
U(x) is the potential energy function of the Force 
 
1. left hand side (LHS) of SE is first evaluated for ? (x,0), 
i.e. t = 0, as it is not dependent on time, i.e. we make 
partial derivations and add the influence of the potential 
energy function on ? (x,0)   
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LHS of SE equals right hand side (RHS) of SE result must 

be equal to t∂
Ψ∂

at t = 0, i.e. initial rate of change of wave 
function 
 

2. from t∂
Ψ∂

at t = 0, RHS of SE, we compute ? (x,dt), the 
wave function at an infitesimal small time interval (dt) 
later by superposition 
  

? (x,dt) = ? (x,0) + [ t∂
Ψ∂

]0 dt 
 
3. that results gets plucked in at LHS of SE again, but now 
we evaluate ? (x,dt), i.e. this time make the partial 
derivations for ? (x,dt) add the influence of the potential 
energy function on ? (x,dt)  (just like we did for t = 0, first 
step), result is again equal to RHS of SE   
 

4. from t∂
Ψ∂

at t = dt, RHS of SE, we compute ? (x,dt2), the 
wave function at an infitesimal small time interval (dt2) 
later by superposition 
  

? (x,dt2) = ? (x, dt) + [ t∂
Ψ∂

]dt dt2  

 
…… 
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each such repetition advances ?  (x,dtn-1) one step in time 
dtn forward 
 
until we have the time (t > 0) we want to investigate our 
particle again – it can all be done by computer quickly and 
numerically  
 
--------------- 
 
“Somebody could still asks: How does it work? 
What mechanism is represented by the wave 
function? Nobody has ever found a mechanism 
behind the wave function. Nobody can explain 
more that we have just discussed. Nobody will give 
you an explanation about what is going on at a 
deeper level. As a matter of fact, we do not have an 
inkling about a basic mechanism from which the 
wave function could be derived.” R. P. Feynman, 1971   
 
 
numerical solutions of Schrödinger equations are fine but 
how may one obtain a mathematical expression for  ? (x,t) 
 
mathematical procedure called separation of variables, 
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? (x,t) = 
tiextx ωψφψ −= )()()(  

 
if U(x) potential energy is function of x only (not of t) !!! 
 

)(
)(

tE
dt

td
i φ

φ
=h  

 

)()()(
)(

2 2

22

xExxU
dx

xd
m

ψψ
ψ

=+−
h

 

 

with E = h f = 2p h f = ?  h          so ?  = h
E

 

 
we can look at the  e-i? t factor above which describes 
the time dependency if the potential energy does not 
depend on time – so that time dependency factor is 

t
iE

e h
−

 
 
in equations above,  E is the total energy, which we can 
normalize to be the kinetic energy plus the potential 
energy, (if we set rest energy E0= 0, as a reference form 
which energy is counted - which we can do arbitrarily) 
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rearranged for further use and called, time independent, steady-
state, or stationary Schrödinger equation in one dimensions 
 
if we have an arbitrary potential energy function U(x) there are 
no explicit analytical solutions to this equation 
 
 
ψ  must be “well behaved” just as ?  has to in 
order to give sensible results for probabilities, i.e. finite 
everywhere including +- ∞ , single valued for any x, 
continuous,  
 

and “smooth” – which is dx
dψ

must also be continuous and 

single valued (the Serway book says here: wherever U(x) 
has a finite value, other books say all the time) 
 
 – all of them are mathematical conditions, so 
called boundary conditions 
 
if we can separate the variables,  

we also get ? (x,t)2 = 
2ψ , meaning all probabilities we 

calculate from ? (x,t)   will not depend on time, are static 
or stationary  



 12 

 
expansion to three dimensions straightforward 
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consequence at least 3 quantum numbers, taking account of the spin 
of the electron it will be 4 for electrons confined to  be in an atom 
 
 
let’s look at a free particle in the plane wave 
approximation, also called a harmonic wave 
 
free non-relativistic particle means no force on it F = 0 = 

dt
dU

− , 

no force means no potential energy U(x), and no dependence of 
the potential energy on t, as particle is free, all energy is kinetic 
E = ½m v2  
one dimensional time independent SE simplifies to  
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½m v2 can be rewritten as m
p
2
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, multiplying within the straight 

bracket yields [ 2)(
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p = h/?  and  
π2
h

=h    so 2)(
h
p  =  (2p/? )2 =  k2 per definition of 

wave number 
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ikxex =)(ψ   

ikxAex =)(ψ   
ikxex −=)(ψ   

ikxBex −=)(ψ   
ikxikx BeAex −+=)(ψ  most general 

 
are all solution of one dimensional time independent 
Schrödinger equation, where A and B are arbitrary constants 
(such constants appear generally in solutions to the SE and we 
will define then in the normalization process) 
 
we had 
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? (x,t) = 
tiextx ωψφψ −= )()()(  

 
so in order to get most general solution of time dependent SE  
 
? (x,t) we multiply most general time independent 

solution )(xψ with time dependence 
tie ω−

 
 
? (x,t) = tiikxikx eBeAe ω−−+ )( = tiikxtiikx BeAe ωω −−− + = 

)()( tkxitkxi BeAe ωω −−− +  
 
where is that free particle? answer: calculate ? (x,t)2 

 

remember any function (be it exponential or sinusoidal) of from 
(kx ± ? t) represents a traveling wave  
 
for (kx - ? t) wave is traveling to the right 
 
for (kx +? t) wave is traveling to the left,  
 
lets decide our particle should travel to the right, we can do that 
by setting B = 0 in the most general solution 
so ? (x,t)2= ? * ?  = 

1202)()( ⋅=⋅=⋅ −−− AeAAeAe tkxitkxi ωω
 

so the probability is a constant A2 = ? 0(x,t)2 at all places and 
times 
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we may have as well calculated 
2)(xψ to find the probability of 

finding the particle for any x we want  
2)(xψ = 

*)(xψ )(xψ  = 
1202)( ⋅=⋅=⋅− AeAAeAe kxiikx

 

 
analyzing the graph we see that the probability of finding the 
particle in any one segment of equal length ? x or dx is 
absolutely the same as it is a constant, so the particle has equal 
probabilities to be at any place, there is no most likely place  
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so let’s assume we have a free particle moving to the right, 
expressed by wave function, see what happens if we put it into Schrödinger 
equation  

 
? (x,t) = )]sin()[cos)( tkxitkxAAe tkxi ωωω −+−=−

 
 
where A is a constant, let’s differentiate partially for x and t and 
put our derivates into the time dependent (one dimensional) 
Schrödinger equation 
 

Ψ−=−=
∂
Ψ∂ − ωω ω iAei
t

tkxi )(
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2
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as it is a free particle, it is not under the influence of a force, so it 
has constant (time and position independent) net potential energy 
U(x) = U0, which may be zero or any other value (remember 
potential energy levels can be set arbitrarily) 
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plugging our derivates in 
 

 Ψ−=Ψ+Ψ−− )()(
2 0

2
2

ωiiUk
m

h
h

    which we can divide by 

? !!! 
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and we get 
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as we know PEKEEtotal +==ωh  
 

so what is m
k

2

22h
           with k2 = (2p / ?)2  and p2 = (h / ?)2  = m2v2       

 

m
k

2

22h
= ½ m v2         is kinetic energy of the free particle moving  

 
to the right       QED, formalism makes sense 
 
 
as long as there is no net force, a particle does not 
change momentum, and moves in a straight line at 
constant speed, uniform linear motion – just the same 
for macroscopic particles is stated in Newton’s first 
law, 
 
Newton’s first law is contained in, i.e. it is actually a solution 
of Newton’s second law, just as harmonic (plane) wave is a 
solution of, i.e. is (contained in), Schrödinger’s law  
free particle solution can also be written as 
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? (x,t) = )]sin()[cos)( tkxitkxAAe tkxi ωωω −+−=−
 

 with E = h f = 2p h f    and ? = h /p = 
p
hπ2  

 
? (x,t) =  
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Let’s look again at probability density, 
normalization and boundary conditions 

 
normalization: 
 
P(x) dx = ? (x,t)2 dx         
 
is probability that particle will be found in infinitesimal 
interval dx about the point x,   
 
P(x) is called probability density             (here in m-1also  
          m-2 or m-3 
 

as probability has to be a single value at every (x) point 
we care to look at to make sense, ? (x,t) and ? (x,t)2 have to 
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be single valued and continuous functions (of x and t) to make 
sense, in addition, they have to be smooth 
 
general solutions to the Schrödinger equation contain 
arbitrary constants which we can arbitrarily assign values 
to, so a good idea is to use these constants for 
normalization procedures  
 
If we know the particle must be somewhere (within some 
length, or area, or volume for which we have precise 
values, e.g. x1 and x2  (x1 < x2 ) or even infinite values +-
∞ we specify the arbitrary constant so that  
 

∫ ==Ψ
2

1

%1001),( 2x

x
dxtx   meaning the particle does exist 

between x1 and x2 with 100 % certainty at all times 
 
any wave function which satisfied this conditions is said 
to be normalized ? (x,t) 
 
if we have such a normalized ? (x,t), we can calculate the 
probability of the particles existence between a and b, 
where a = x1 and b = x2 in % by 
 

∫ Ψ=
b

a
dxtxP 2),(                    so if we forget to normalize  

we have just P ~ probability of finding the particle there 
and then, with normalization this becomes a measure in %  



 20 

 
in all cases P is just the area under a curve 

 
 
this sets a strict condition to ?  if it is not only to be a 
function that happens to solve the Schrödinger equation, 
but also to represent the pilot/guiding/matter wave of a 
real particle 
 
the area under the curve has to be finite so that it can 
normalized to be 1 or 100 %, so ? (x,t)  has to go to zero 
for x1 and x2 otherwise ? (x,t)2 would not go to zero and 
the area under the curve would not be finite 
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example: Bohr radius in hydrogen atom 
 

 
 

boundary conditions must be fulfilled for 
? (x,t)  to represent a real particle 
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 well behaved functions 
 
?  and ψ  must be “well behaved” in order to give sensible 
results for probabilities,  
 
i.e. finite everywhere,  
 
single valued for any x (and t),  
 
continuous, i.e. having x (and t) values everywhere 
(unless V(x) is infinite) 
 

and “smooth” – which is dx
dψ

must also be continuous 

wherever U(x) has a finite value  
 
in addition to being a solution of the Schrödinger equation  
 
so boundary conditions and requirements of 
normalization will make it possible for us to decide 
which solution of Schrödinger equation represent real 
particles and which are a purely mathematical construct  
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example free “particle” 
 
       note that the solution of the  
       Schrödinger equation that 
       describes this particle can  
       not be (easily) normalized, as  
       the area under the parallel 
       line reaching from – to +  
       infinity is infinite!!!, that,  
       however, was implied by the 
       definition above  
         
        
 
 
 
so this wave function does not describe a “real physical” 
particle, it is however a very useful starting model for a real 
particle as we can construct form such waves by means of 
superposition an acceptable model for a real particle, just as we 
did for electromagnetic waves in chapter 4 
 
that real particle will then have a wave function that can 
be normalized and the plot of it probability density 
function will show a pulse with has finite values at some 
region x∆ , peaking somewhere, and going to zero 
everywhere else, especially when x approaches +- infinity 
 
let’s look at the uncertainty principle again,   
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2
hh ≥≈∆⋅∆ xpx  

and apply it to the free particle in the graph above 
 
if the particle is free, no net force acts on it, Newton’s 1st law 
states, if there is no net force acting, there is no change in 
momentum, so    
 

0=∆ xp      which amounts to a violation of the uncertainty 
principle, a model can violate the principle, but not a real 
particle, so the free particle described by one plane wave 
function (rather that a sum of many plane wave functions) is not 
a real particle   
 
having a free particle described by a pulse will 
again mean we have mathematical uncertainties 
 
? x ? k ˜  1 
 
? ?  ? t ˜  1 
 
in the model that translate to real physical uncertainties when we 
make a physical interpretation of the model by replacing  ? k 

with h
p∆

=
∆

π
λ
π 22

(after de Broglie) and multiplying both sides with 

π2
h=h       
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(analogously: applying the definition of ?  = 2p f and E = h f     
(Plank-Einstein equation) gives physical meaning to ? ?  ? t ˜  1) 
so we don’t violate with the mathematical model for the 
pulse/wave bundle/wave packet Heisenberg’s uncertainty 
principle and this describes a real particle,  
 
in addition, the area under a pulse will of course be finite, so we 
can normalize our wave function  
 
 
Expectation values and Operators 
 
the solutions to the Schrödinger equation contain everything that 
can be known (i.e. which the uncertainty principle allows us to 
know) about the movement of an entity that is a wave-particle 
with mass 
 
so lets extract the (arithmetic) mean position – which is also 
called the expectation value, (your book states here incorrectly 
the average position, an average does not refer to a 
distribution/population but the arithmetic mean does),  

∑
=

=
n

i
ii xf

n
x

1

1
    

 
where f is the dimensionless frequency of occurrence of one 
particular value of x 
(forget about p 215 lower half and p 216 top paragraph, I am 
pretty sure that is incorrect as I did not find a similar Modern 
Physics treatment in Beiser and Tipler  
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short maths into 
 
if the “sample of x values” is large the mean of these values may 
be taken as an estimate of the distribution/population mean  
    
the sum of all discrepancies form the mean is zero 
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the variance of the mean   
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for large n, one can approximate n with n-1 and use the variance 
of the population 
 

 ∑∑
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1
)var( µµ as a measure of variance of  

the sample  
 
standard deviation (s ) is the square root of the variance and 
another measure of the amount of scatter in the data 
 
if s  = 0 then var(x) = 0, there is no spread in the data and the 
distribution is called sharp 
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the uncertainly principle now tells us that particle positions (x) 
can only been know with probabilities, i.e. its distribution is 
never sharp and always fuzzy 
 
 
back to the expectation value, <x> 
 

∫
∞

∞−

ΨΨ>=< dxtxtxxx ),(*),(          where ? (x,t) has to be 

         normalized 
definition 
the arithmetic mean of x that would be expected from 
measurements of the positions of a large number of 
particles with the same wave function! 
 
don’t confuse with probability of finding a particle in an 
infinitesimal interval around x – it’s completely different things, 
so P = 0 may be compatible with a finite expectation value <x> 
 
e.g. for an infinite square well and even quantum number wave 
functions: P(L/2) = 0, but <x> = L/2 because ? 2 and alsoψ 2 are 
symmetric about that point 
 
to calculate we have the definition of the expectation value <x> 

∫
∞

∞−

>=< dxxxxx )(*)( ψψ  

we need normalized wave functions, and they are  
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as there is no i(s)  1− , the conjugate complex function has the 
same form and the ψ 2 are simply 
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since sin (np) = 0, cos (2np) = 1 and cos 0 = 1, for all values of n 
the expectation value of x is 
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in all quantum states, the arithmetic mean position of the particle 
is in the middle of the box 
 
for  n = 2,4,6 the “average”  position is also L/2 and this has 

nothing to do with 02 =ψ the probability density of finding the 
particle there 
 

 
 
now the expectation value of any function of x can be 
calculated the same way 

∫
∞

∞−

ΨΨ>=< dxtxtxxfxf ),(*),()()(  
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so f(x) can be potential energy U(x) for example 
 
however no function p = p(x) exist by virtue of the uncertainty 
principle, ? px ? x =

2
h    if both of these entities vary in a fuzzy 

way there simply can’t be a relation between the two of them 
(there is simply no classical path in quantum mechanics)         
p = mv but p ? p(x) in quantum mechanics 
 
there is the same problem with expectation value of E, a there is 
an uncertainty principle as well ? E ? t =

2
h  only if we are 

considering a stationary state, i.e. when there is no time 
dependency and no ? t, no such uncertainty, we will have sharp 
values for energy 
 
 
so what we need here are operators 
 
operator is a mathematical concept telling us what to do with the 
operand that follows it 
 

e.g. )(
xi ∂

∂h  (x2 t)    means that one has to take the partial x 

derivate of the function (x2 t) and multiply it with  i
h

   

 

so )(
xi ∂

∂h  (x2 t) = xt
i

2⋅h   

 

what is )(
xi ∂

∂h  (cos x ) = - )(
i
h  sin x 
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entities for which we have operators are called observables as 
they have physical meaning and can be observed (although 
subject to the uncertainty principle)  
 

now )(
xi ∂
∂h

 is actually the momentum operator [p] that 

gives us the expectation value of the momentum <p> 
 

∫
∞

∞−

Ψ
∂
∂

Ψ>=< dxtx
xi

txp ),(*),(
h

 note that the order 

of factors is important, there is only one way of 
doing it correctly 
 
similarly  

∫
∞

∞−

Ψ
∂
∂

∂
∂

Ψ>=< dxtx
xixi

txp )},({*),(2 hh
  

 
first one operator is applied to its operand yielding the 
operand for the second operator (which will again stand to 
the right of the operator) 
 
for example: calculate the expectation value <p> for the ground 
state wave function in the infinite square well,  
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we know it is a stationary state (standing wave) so it is time 
independent, we know the particle is trapped in the well, so it is 
never outside, so we can restrict the integral to the well  
 
the (normalized and time independent) wave function for that 
state is =ψ  

L
x

L
πsin2  as there are no i(s) in it the conjugate 

complex of that functions *ψ  is also 
L
x

L
πsin2  

 

so ∫ ∂
∂

>=<
L

dx
L
x

LxiL
x

L
p

0

)sin(
2

))(sin(
2 ππ h

 

 

simplifies to 
0)cos()sin(

2

0

=>=< ∫
L

dx
L
x

L
x

LLi
p

πππh
 

 
this is of course because sin x = 0 at the nodes!! 
 
so the expectation value <p> is zero, what does it mean, simply 
the particle is just as likely moving to the right as it is moving to 
the left, the arithmetic mean must, thus, give zero 
 
generally operators are written in sharp straight brackets, i.e. [p] 
or with a “caret”, i.e. p̂  
 
as there are many more observables, entities with physical 
meaning that are allowed to be known by the uncertainty 
principle, there are many more operators that give us expectation 
values of these observables 
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total energy operator  [E] = t
i

∂
∂

h  

 
kinetic energy operator non relativistic  
 

[KE] = 2

22
2

2

2
)(

2
1

2 xmximm
p

∂
∂

−=
∂
∂

=
>< hh

 

 
Potential energy operator [(PE)] = [U] = U(x) 
 
now let’s see if everything is consistent with the Schrödinger 
equation 
 
E = KE + U         so we must also have     [E] = [KE] +[U] 
 

that is equivalent to U
xmt

i +
∂
∂

−=
∂
∂ 22

2
h

h  

 
now we multiply both sides with Ψ (it has to come from the left 
as these “guys” are operators)  
 

and get 
Ψ+

∂
Ψ∂

−=
∂
Ψ∂

)(
2 2

22

xU
xmt

i
h

h
 

 
so postulating both  
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[E] = t
i

∂
∂

h  

 

[p]= xi ∂
∂h

 

 
is equivalent to postulating the Schrödinger equation !!! 
 
now notice the operators of kinetic and potential energy are only 
involving spatial coordinate x, we can define a combined 
operator for the total energy that also involves only the spatial 
coordinate x, this is call the Hamiltonian operator [H] 
 

 [H] = U
xm

+
∂
∂

− 2

22

2
h

 

 
sum of kinetic and potential energy operator must also be total 
energy operator that involves only time coordinate (t) 
 

E = t
i

∂
∂

h
 

 
so we have actually two total energy operators and if they 
operate on the same wave function, the must yield the same 
observable expectation value !! again multiplying with Ψ yields 
 

[H] Ψ = [E] Ψ  
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the “pretty compact” version of the Schrödinger equation 
 

Eigenvalues and Eigenfunctions 
 
for simplicity we deal here only with time independent wave 
functions, if something is in a steady state the uncertainty 
principle ? E ? t = 

2
h  does not apply, there is all the time in the 

world, so the energy has settled into a stationary state an exact 
value, it is only when it jumps between stationary states that 
there is a ? t again, and with it an uncertainty of energy that 
shows up in a widths of a spectral line 
   
“eigen” is German and means self, so what is meant here is 
combinations of real numbers (values) and functions that are 
equivalent to the action of an operator on these functions. 
 
(if you know about systems of linear equations and matrix representation, you  
have the very same things, combinations of vectors with values that are “self” 
solutions to the problem, was invented in Göttingen by Jordan and Hilbert, who 
told Born und Heisenberg about it, …) 
 
mathematical definition [G]? n = gn? n  where  

e.g. operator 2

2

dx
d

 has eigen function xe2=ψ   

what is the eigenvalue to this functions and operator 
 

xxxx ee
dx
d

e
dx
d

dx
d

e
dx
d 2222

2

2

42)( ===                 
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as the eigen function was just xe2
 the (generally real) number 4 is 

for that function exactly equivalent to the operator 2

2

dx
d

 

 
back to physics 
 
eigenfuctions are here again solutions to the Schrödinger 
equation, we deal only with time independent form if we are 
looking at stationary states such as in the case of a particle in a 
box we get sharp values for certain operators such as the total 
energy operator, so there is no expectation value for energy as 
there is no arithmetic mean of measurements on many identical 
particles, if we are dealing with an eigenvalue/eigenvector 
problem the eigenvalue is just one value, e.g. a definitive energy 
for every eigenfunction, , eigenfunction and eigenvectors are 
refereeing to a set of quantum numbers that are integers 
 
from particle in an infinite square well, you know, energy 
comes only in discrete values, En, these are the 
eigenvalues to the eigenfunctions nψ   
 
so time independent Schrödinger equation can be 
written most compactly 

[H] nψ = En nψ  
 
for correct description of atoms we will have a second set of eigenvalues and 
eigenfuctions, because angular momentum is in nature also quantized not only 
energy, so there will be another quantum number actually there will be two more sets 
of eigenfunctions and eigenvalues as a  state of an electron in an atom is described by 4 quantum 
numbers  
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Model: Particle in a box with infinitely large 
potential barriers, infinite square well  
 
 
infinite barriers, the particle is always confined, never outside 
 
exercise: deriving form of the wave function under the boundary 
conditions 
 
it’s a stationary state, so we use time independent Schrödinger 
equation 
 

0)()}({
2)(

22

2

=−+ xxUE
m

dx
xd

ψ
ψ

h  

 
 
so 0)( =xψ  outside the box 
 
inside box U(x) = 0 
 

)(
)(

0
)(2)( 2

2

2

22

2

xk
dx

xdxmE
dx

xd
ψ

ψψψ
+==+

h  

 
solutions of this ordinary partial equation are sin kx and cos kx 
so most general solution is 
 

kxBkxAx cossin)( +=ψ                inside the box 0 < x <L 
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how about x = 0 = L? 
 
well interior wave must match exterior wave to be continuous 

everywhere, but the slope dx
dψ

is not continuous, so it is not a real 

physical situation, just a model that may approximate a real 
physical situation pretty well 
 
so interior wave must vanish at x and L 
 
we can obtain this by setting  
 

0____0)0( === xforBψ  so the cosine herm is gone 
 

LxforkLAL === ____0sin)(ψ             this requires kL=np 
               where n is 1,2,3, … 
 
because k = 2p/? this is equivalent to fitting an integer number 
of half-wave length into the box  
 
using k = np/L  
 
and remembering that  
 

)(
)(

0
)(2)( 2

2

2

22

2

xk
dx

xdxmE
dx

xd
ψ

ψψψ
+==+

h was 

our starting point 
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we find that the particles energy is quantized 
 

2

2222

82 mL
hn

m
k

En ==
h

   

 

just the same result as we obtained in Chapter 4 from 
nodes of standing wave conditions 
 

 
 

looking at 
2

1 )(xn>ψ there are places besides the walls (x and L) 
where the particle can never be found!!! 
 

for 
2

2 )(xψ  the particle is never at 1/2 L 
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for 
2

3 )(xψ  the particle is never at 1/3 and 2/3 L 
 
how does the particle get over these points ??? well 
it’s particle-wave duality not just a particle of which 
we have an intuitive idea how it is supposed to move 
– something we can’t grasp with or brain having 
evolved over time looking only at classical 
phenomena – and of course, there is no path the 
wave-particle could follow    
 
 

so far we only looked at 
2)(xnψ to make calculations of actual 

probabilities, we need to normalize the wave functions 
 

dx
L

xn
AdxxP

LL
)(sin1)(

0

22

0

2 π
ψ ∫∫ ===          

 
there is a trigonometric identity: 2 sin2 T = 1 – cos2T  so we get 
 

dx
L

xn
Adx

L
xn

A
LL

)
2

cos(1
2
1

)(sin1
0

2

0

22 ∫∫ −==
ππ

 

 

now   cos L
xπ2

  integrates to    sin L
xπ2

  which is zero at x = 0 

and x = L 
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∫ ⋅
L

dx
0
1 is just L – 0 = L 

 

so 1 = 2

2 LA
   from which we get the normalization factor  

 

A = L
2

 

 
our wave functions ready to be evaluated for probability 
densities in % are, thus,  
 

 
)sin(

2
)(

L
xn

L
xn

π
ψ =

     with n = 1, 2, 3, … 

 
 
one more thing on the infinite square well 
 
the lowest energy state is given by n = 1 
 
what would happen is n = 0 ?  
 

0
)(

2

2

=
dx

xd ψ
      is to be solved !  

 
solution is wave function  
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BAxboxinside +=)_(ψ  
 
this wave function has to be zero at x and L, this requires both A 
and B to be zero 
 

!!!_0)_( everywhereBAxboxinside =+=ψ  
 
is we look at the probability of finding this particle 
 

∫ ===Ψ
L

particlesuchnoistheredxtx
0

2 ____%00),(   
 
so n = 0 and E = 0 are not possible !!! 
 
returning to wave function for particle in infinitely deep 
box / infinite square well 
 

L
xn

Axn
π

ψ sin)( =  

 
for each of the quantum numbers, 1, 2, 3, … there is a specific 
wave function describing everything that is permitted to be 
known by the uncertainty principle  
one last thing on the infinite square well 
 
with assuming impenetrable walls of infinite height, 
we actually violated one of the boundary conditions 
for physical meaningful wave functions:  
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derivates of wave function with respect to space 

coordinates (x,y,z), i.e.  x
tx

∂
Ψ∂ ),(

 or dx
d

x
x ψψ

=
∂

∂ )(
 must 

be continuous, this means slopes must be continuous  
  
in the infinite square well model, the wave functions 
just “kind of stopped” at the walls, analogous to a 
classical wave on a string of a guitar, that would stop 
and get reflected back making up the standing wave 
– making music ... 
 
but the real world is different on a quantum level, if 
it is to be a real particle that is represented by a 
solution to the Schrödinger equation, the slope has to 
be continuous, so a real particle-wave does not stop 
at any barrier, it always “leaks” into the barrier, and 
if the barrier is not infinitely thick (which it never 
really is in the real world either) the particle has a 
probability to be found outside the well, when it has 
“tunneled” through the barrier (as it didn’t have 
enough energy to go over the top of the wall)   
 
 
so let’s sum up:  
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in nature, there are no infinite potentials energy 
walls, so we should consider an alternative model,  
 
finite square well, particle in a box with finite 

wall heights  
 

(of either infinite thickness or finite thickness, again there are no 
walls of infinite thickness, but we modify our model one thing at 
a time ) 
 

 
 
if it has sufficient kinetic energy, classical particle can go over 
the top of a finite wall and move freely outside, but with reduced 
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speed  corresponding to the diminished total energy kinetic 
energy KE = E-PE= E-U > 0 
 
but if total E is smaller than the height of the potential energy 
walls of the well, i.e. E-PE = E-U < 0, there is no kinetic energy 
left to roam freely, so classical particle can’t be outside the wall 
and moving, it is trapped forever in 0 < x < L  
 
In quantum mechanics, because of the condition  
 

 x
tx

∂
Ψ∂ ),(

 or dx
d

x
x ψψ

=
∂

∂ )(
 must be continuous, i.e. 

slopes must be continuous,  
 
a particle leaks out into the potential walls !!! 
 
This is because ?  is never zero outside the well, so 
the probability of finding the particle there ? 2  is not 
zero either, so the particle is actually there !!! 
 
so lets look at the parts of the wave function that 
penetrated into potential walls 
 
solutions to the (time independent) Schrödinger equation  
 

x
I Cex αψ =)(   for x < 0, section I, where C is a constant we can  

     use for fit to the second segment 
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x

III Dex αψ −=)(   for x > L, section III, where D is a constant we  
     can use for fit to the second segment 
 

and 2

)(2
h

EUm −=α  is a positive constant, as U is taken to be zero 

in the well and some positive value outside the well  
 
so we have an exponential decay, that’s pretty fast,  
from of the constant a, we can see that the heavier the particle is 
and/or the  larger the difference U – E, (i.e. the larger – KE of 
the bound state)  the faster  )(xψ decays in the walls, if the walls 
are infinitely wide, the wave function decays to zero 
 
general solution for region II is 
 

x
mE

Bx
mE

AxII hh
2

cos
2

sin)( +=ψ                as U(x) = 0 in 

            the well 

and k = h

mE2
 as usual 

but as sin (0) = 0 we have to set A = 0 and can only use the 
second part with “cos” functions 
 
that “cos” function’ has to match with the functions for section I 
and III at x = 0 and L and its first derivate with respect to x has 
to match as well (smoothness condition of wave functions that 
describes real particles) for x = 0 and L 
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this can only be achieved for certain energy levels En which are 
all smaller that their counterparts from the infinite square well of 
the same widths 

2

2222
__inf

82 mL
hn

m
k

E wellsquareinite
n ==

h
 

 

example say we have n = 1 and  
max

2
1

)( IIII L ψψ = , i.e. IIψ at the 

wall is only half the maximal value of this function at the center 
 
so we can say cos kL = 1/2  
 
kL = 60° = p/3 

 

k = p/3L                          k = h
12mE

   from above, resolved for E1  

 

2

22

2

22
__

1 18
1

18 mL
h

mL
E wellsquarefinite == hπ

      

 
for that particular scenario exactly 2.25 times smaller 
due to the particular height and widths of the square potential 
well, i.e. U and L, that results in the value of the wave function 
at L just being half the maximum value (which we have in the 
center of the well) 
 
on can also see form the graph that the wavelength that fit into a 
finite square well (with leakage into the barriers) are somewhat 
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larger than those wavelength that would fit into an infinite 
square well of the same widths, larger wavelength correspond 
after de Broglie (? = h / p) to smaller momenta (p), and momenta 

are liked to kinetic energy by KE  = 
m

p
2

2

    

 
the similarity between finite and infinite square 
well is also expressed in the concept of a penetration depth d  
 
per definition 

)(2
1

EUm −
==

h
α

δ  

 
at a distance d beyond each of the well edges the amplitude of 
the wave function has fallen to 1/e of its value at the edges, and 
approached zero exponentially, i.e. very very fast beyond d 
 
with that we can make an approximation 
 

2

222
__

)2(2 δ
π
+

=
Lm

nE wellsquarefinite
n

h
    (which shall be sufficiently  

       accurate if d << L) 
 
which effectively says that the widths of the well is “extended” 
by ± d, i.e. a total of 2 d, and we have the same relation to 
calculate the energy levels as we had before for the infinite 
square well  
 
now d is dependent on E, see relation above, so solving for 

wellsquarefinite
nE __ by this approximation will be an iterative process 
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semiconductor quantum dots- at last the real thing 

trap for an electron and a hole in a 
semiconductor is realized by 
embedding a semiconductor  entity of 
the order of magnitude 10 nm diameter 
and with a smaller band gap into a 
semiconductor matrix with a larger 
band gap  
 
particle in these “wells” is bound state 
of an electron and a hole, if free it’s 
called an exciton, if it is trapped it’s 
called an excitonic polaron 
 
usual quantum mechanical treatment 
with Schrödinger equation, … applies, 
as a very crude approximation it is a 
three-dimensional square box with 
finite (height and thickness) potential 
energy walls, the matter wave leaks into 
the barrier and to some extend tunnels 
through it, otherwise a device could not 
work 
 

it’s also called a pseudo-atom as there 
are discrete energy level, so there is the 
analogue of spectral lines 
 
quantum dots such as this may be 
used in future for new computer 
architectures such as quantum 
cellular automata   
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deposition, surface diffusion, 
interdiffusion are random 
events, smaller band gap 
semiconductor (alloy) 
usually larger lattice 
constant, (one way of self-
assembly, resulting in “cake 
with raisins”)  
 
epitaxially grown 
quantum dots 
compressively strained 
and possess random 
distribution of atoms ?  
ordinarily strained QDs 
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over time, atomic ordering as observed by 
transmission electron microscopy 
 

     
 Figure 1: (In,Ga)Sb agglomerates in GaSb matrix; (a) [001] plan-view HRTEM image 
which was recorded at 500 ºC and after a thermal treatment in the electron microscope at 
temperatures of the order of magnitude of the growth temperature for several hours, ref. 
14, suggesting that the transformed structure of this QD rather than its original sphalerite 
prototype structure is thermodynamically stable;  (b) <110> cross section Z-contrast 
STEM image, showing a QD with atomic ordering in every forth ± (002) plane; power 
spectra as inserts; c) [001] atomic resolution Z-contrast STEM images of structurally 
transformed In(As,Sb) QDs in InAs matrix. 

(from one of my papers, see web pages, if interested) 
 
  
      PSU’s new more than $ 1,000,000 
       microscope, would itself not be  
       possible without modern physics  
       and Schrödinger’s equation,  
       because design of electromagnetic 
       lenses is quite involved, ray  
       optics does not do the job, it’s 
        too crude an approximation 
 

 5 nm c  5 nm 

a 

b 
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Quantum states of Harmonic Oscillator, a very 
useful approximation 
 
say a particle is in potential well subject to a linear restoring 
force xKF

rr
⋅=     with force constant K 

 
corresponding potential energy is U(x) = ½ K x2   we had 
something like it as a mass on a spring, a very long pendulum 
with a small elongation, …. anything that is limited to small 
excursions (x) around a stable equilibrium position 
 
near the stable equilibrium position, say x = a, the potential energy can 
be approximated by a parabola: 
 
U(x) = U(a) + ½K(x-a)2 
 
under the condition that the curvature of that parable must match     
 
that of U(x) at the point x = a, this condition is fulfilled if 
 

K = 2

2

dx
Ud ¦ a 

 
and U(a) is potential energy in equilibrium position a, which we can of 
course define as the zero level from which all potential energies are 
measured, 
analogously we can use coordinate shift and define a = 0 on the x axis 
 
with these two conventions we have 
 U(x) = U(a) + ½K(x-a)2 = 0 + ½K(x-0)2 = ½K x2 
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in other words, a particle that is limited to small enough 
excursions about a stable equilibrium position approximately 
behaves as if it were attached to a string with a force constant 
prescribed by the curvature of the true potential at equilibrium   
 

 
 
now if the oscillation is simple harmonic (as in classical 
physics), with angular frequency 

m
K=ω    (don’t confuse K - the 

force constant with k the wave number) and we can write for the 
potential energy  
 
U(x) = ½K x2 = ½ m ? 2 x2  

 

and put this potential energy function into the time 
independent Schrödinger equation 

)()
2
1(2)( 22

22

2

xExmm
dx

xd ψωψ −=
h    as we are interested in the  

       stationary states of the system 
 
the kind of wave functions we had so far in this chapter are all for constant potential energy 
function, either zero or some finite value for all x, here the potential energy is a function of x2 
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ground state, n = 0, note is a mathematical 
consequence  

h

h
24

1

0

2

)(
xm

e
m ω

π
ω

ψ
−

=      
and E0  = ½ ωh = ½ h f  (also called 
zero point energy, as it is for  n = 0 lowest 
quantum number  
 
E1= 3/2 h f,  E2= 5/2 h f ,  
En = (n + 1/2) h f,            n = 0, 1, 2, 3 
 
so ? E = hf   or some multiple of hf, 
Planck was right in his 1901 paper !!! 

 

 -A = x = A are the 
limits a classical 
oscillator would 
have,  
in  a sense these 
limits are barriers 
of the potential 
well, and there is a 
“lot of leakage” 
into these barriers, 
so in a classical picture 
the string would get 
overstretch so severely 
that it may not spring 
back 
 
note that even a 
classical oscillator 
does have a zero 
point energy = ½ h f  
because things 
never stand still in 
nature 
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that leakage into the barriers is shown below as well for 
2

nψ so 
the particle is actually at these positions with certain 
probabilities 
 

 
for large quantum numbers classical physics (dashed lines) and quantum 
physics (curves) give corresponding probabilities of finding the particle 
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Transitions between states and selection rules 
 
energy levels revealed when system makes transitions,  
 
either to a higher energy state as a result of excitation 
(absorption of energy)  
 
or to a lower energy state as a result of relaxation (de-excitation, 
emission of energy , if it is an electron this is usually 
electromagnetic radiation) 
 
form classical physics: if a charge q is accelerated, it 
radiated electromagnetic radiation, remember that’s how X-rays 
are produced, if a charge oscillates, the radiation is of the same 
frequency as the oscillation 
 
 
if we have charged particle (charge q), we define charge density  
 

nnn q ψψρ *=        this quantity is time independent, stationary  
    state, i.e. does not radiate, quantum  
    mechanical explanation of Bohr’s postulate,  
    let’s say n is the ground state 
 

with this wave function nψ goes a certain (eigen-value) energy 
En , as long as the charged particle is in this energy state it does 
not radiate, it does neither lose nor gain energy 
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say it gained just the right amount of energy to go to an excited 
state, this means eigen-value (energy) and wave function eigen-
function change 
 
let’s now consider how the particle returns to the ground state 
 
 only if a transition form one wave function (m) to another wave 
function (n) is made, the energy changes ? E = Em –En from one 
definitive value (excited stationary state, e.g. m) to the other 
definitive value (relaxed stationary state, e.g. n), Em > En  
 
as wave function for a particle that can make a transition, we 
need time dependent wave function ? (x,t), as it is two different 
states m and n, we have a superposition 
  
? m,n(x,t) = a ? m(x,t) + b ? n(x,t) 
 
 initially say a = 1, b = 0, electron in excited state, m 
 
 while in transition a < 1, b <1, electron is oscillating  
        between states 
 
 finally a = 0, b = 1, electron in relaxed state, n 
 
we can calculate frequency of this oscillation 
 
expectation value that a particle can be in a transition is 

∫
∞

∞−

ΨΨ>=< dxtxtxxx nm ),(*),(
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if this expectation value = 0 because the integral is zero, there is 
no transition possible 
 
multiplied with the charge q, we have a dipole moment 
  

∫
∞

∞−

ΨΨ>=< dxtxtxxqxq nm ),(*),(
  that radiates 

q<x>  = (2 q a b cos (? mn t) ∫
∞

∞−

dxx mn ψψ * ) + constant 

 
which we can interpret as the expectation value is oscillating due 
to cos function,  the frequency of this oscillation  
 
is the difference of the eigenvalues of the functions divided by h-
bar 

? mn = h
nm EE −

= 2p f     in other words, ?E = h f 
 
absence of a transition because the integral is zero is 
usually described as a selection rule 
 
for harmonic oscillator: ? n = ± 1, so there is no transition 
between n = 4 and n = 2, it is always one hf that is emitted or 
absorbed, just as Plank had to assume in order to make his 
radiation formula fit the experimental data 
 
for infinite square well ? n = 1, 3, 5 but not 2, 4 ,6 

 since, e.g. 0)(sin)2sin(
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