
LLNL-TR-779424

Properties of the Graph
Modularity Matrix and its
Applications

B. G. Quiring, P. S. Vassilevski

June 26, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS
APPLICATIONS

BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

Abstract. We study the popular modularity matrix and respective functional
([5]) used in connection with graph clustering and derive some properties useful
when performing vertex aggregation of the associated graph. These properties are
employed in the derivation of a multilevel parallel pairwise aggregation algorithm.
Some illustrative examples which include algebraic multigrid (AMG) coarsening
that follows strong direction of anisotropy in finite element problems as well as
comparative performance results of the studied algorithm are presented.

1. Introduction

The modularity functional associated with a weighted graph is considered the state-
of-the-art tool to derive algorithms for graph clustering, which exploit its maximiza-
tion. One of the best clustering algorithms is of multilevel nature and was originally
proposed in [1]. It is known as the Louvain algorithm. Since then it has found a num-
ber of extensions ([13], [14]) that include implementations on multicore computers,
which makes it attractive for very large-scale graphs. Other approaches for graph
clustering exploit spectral information of matrices associated with the graph, which
may become prohibitively expensive in the large-scale case. Louvain’s algorithm is
attractive and efficient due to its multilevel nature, where at every step one performs
only local operations. It resembles the so-called relaxation or smoothing iterations
in the well-known multigrid method. The second immediate similarity is with the
aggregation-based multigrid, namely the creation of the coarse graph obtained by
forming sets, which we refer to also as aggregates (syn. communities, clusters, coarse
vertices), of fine-level vertices and computing weights for the coarse edges that connect
any pair of coarse vertices.

The purpose of the present work is to make these connections more explicit and
relate them with the change of the modularity matrix at every step of adding vertices
(or previous level clusters) to a current cluster.

Our objective is two-fold: on one hand we can use the modularity change matrix
as weights in graph clustering (which is basically weighted graph partitioning), and
on the other hand, we can use techniques employed in aggregation-based AMG (al-
gebraic multigrid) to more efficiently (including in parallel) compute the coarse-level
quantities to hopefully better speed up the resulting clustering algorithm. As a side
result, by appropriately assigning weights to the edges of the sparsity graph of a given

Date: August 24, 2018–beginning; Today is June 27, 2019.
1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.
Key words and phrases. graphs, multilevel algorithms, graph modularity.

1

2 BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

s.p.d. matrix A, we can employ the respective modularity-based coarsening to gener-
ate matrix-dependent hierarchy of aggregates for use in AMG algorithms, or simply
as physics-based domain/mesh partitioners. The latter topic is only illustrated by
some examples to demonstrate its potential, and is left for a more detailed study
elsewhere.

The remainder of the present paper is structured as follows. In Section 2 we
introduce the modularity matrix and formulate its main properties of our interest.
We also study the modularity change matrix after an aggregation step is performed.
It contains the properties of the modularity change matrix that are of our main
interest. Section 3 contains a simple parallel pairwise aggregation algorithm that is
recursive, i.e., its use is to generate a hierarchy of coarse sets of aggregates as well as
some heuristics which can speed up and further parallelize the method. Comparisons
of this method with Louvain’s method is included here. Section 4 illustrates the
potential of the proposed method as a coarsening algorithm for AMG which detects
communities which follow the dominant anisotropy in finite element matrices. At the
end, in Section 5, we draw some conclusions.

2. The modularity matrix: definitions and properties

Consider a symmetric n× n sparse matrix A = (aij) with positive rowsums

(2.1) ri =
∑
j

aij > 0 for all i = 1, 2, . . . , n.

If we introduce the vector r = (ri) ∈ Rn and the constant vector 1 = (1) ∈ Rn, we
have that

r = A1.

Let the total rowsum be

(2.2) T =
∑
i

∑
j

aij =
∑
i

ri > 0.

The following matrix is referred to as the modularity matrix, [5],

(2.3) B = A− 1

T
rrT .

It is clear that B = (bij) has entries

bij = aij −
1

T
rirj.

From the definition of B, we have

B1 = A1− r
rT1

T
= r− r = 0.

We see that B has zero rowsums and hence must have both negative and positive
entries in each row.

In what follows we need the normalized rowsums

(2.4) αi =
ri
T

=
1

T

∑
j

aij.

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS APPLICATIONS 3

2.1. Performing aggregation: modularity change matrix. Let {A} be a non-
overlapping partition of the vertex set {1, 2, . . . , n}.

For each aggregate A, we define

(2.5) αA =
1

T

∑
i∈A

ri =
∑
i∈A

αi =
1

T

∑
i∈A

∑
j

aij.

Consider also the partial rowsums

(2.6) dA =
∑
i∈A

∑
j∈A

aij.

We also define the aggregate edges (pairs of connected aggregates A and B). Let

(2.7) aAB =
∑
i∈A

∑
j∈B

aij

The popular modularity functional associated with the partitioning {A} reads ([5]),

(2.8) Q =
1

T

∑
A

∑
i∈A

∑
j∈A

bij =
1

T

∑
A

∑
i∈A

∑
j∈A

(
aij −

1

T
rirj

)
=
∑
A

(
dA
T
− α2

A

)
.

Lemma 2.1. Assume that the distinct aggregates A and B have merged and formed
a new aggregate denoted by (AB). Then the following formula holds for the change
of modularity

∆QAB , Qnew −Qold = 2
(aAB
T
− αAαB

)
.

Proof. Based on formula (2.8), we have

∆QAB = Qnew −Qold

=

 1

T
d(AB) +

1

T

∑
C6=A,B,(AB)

dC

−
α2

(AB) +
∑

C6=A,B,(AB)

α2
C

−

 1

T
(dA + dB) +

1

T

∑
C6=A,B,(AB)

dC

−
α2

A + α2
B +

∑
C6=A,B,(AB)

α2
C

=

(
1

T
d(AB) − α2

(AB)

)
−
(

1

T
(dA + dB)− (α2

A + α2
B)

)
.

Using now that d(AB) = dA + dB + 2aAB and α(AB) = αA + αB in the above identity,
we obtain

∆QAB =

[
1

T
(dA + dB + 2aAB)− (αA + αB)2

]
−
[

1

T
(dA + dB)− (α2

A + α2
B)

]
= 2

(aAB
T
− αAαB

)
.

�

4 BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

Remark 2.1. We may think of the original vertices as single-point aggregates. Then,
the change of modularity after merging vertex i and vertex j is a scaled version of the
entry bij of the modularity matrix, i.e., we have

∆Qij = 2
(aij
T
− αiαj

)
=

2

T

(
aij −

1

T
rirj

)
=

2

T
bij.

Since
∑
j

bij = 0, we always have negative and positive values of ∆Qij. We choose to

merge i and j only for pairs i, j with positive values of ∆Qij.
Additionally, we may regard ∆Qij as the entries of a matrix denoted ∆Q, and will

do so later.

Lemma 2.2. Consider three aggregates A, B and C. Assume that B and C have
merged to a new aggregate denoted by (BC). The following additive property holds for
the change of modularity.

∆QA(BC) = ∆QAB + ∆QAC.

Proof. We have

∆QAB = 2
(aAB
T
− αAαB

)
∆QAC = 2

(aAC
T
− αAαC

)
∆QA(BC) = 2

(aA(BC)

T
− αAα(BC)

)
.

Next, we use the properties

α(BC) = αB + αC,

aA(BC) =
∑
i∈A

∑
j∈B∪C

aij

=
∑
i∈A

∑
j∈B

aij +
∑
i∈A

∑
j∈C

aij

= aAB + aAC.

The latter shows that
αAα(BC) = αAαB + αAαC.

Therefore,

∆QA(BC) = 2
(aA(BC)

T
− αAα(BC)

)
= 2

(
aAB + aAC

T
− αA(αB + αC)

)
= 2

(aAB
T
− αAαB

)
+ 2

(aAC
T
− αAαC

)
= ∆QAB + ∆QAC.

�

Lemma 2.2 enables us to prove the following result.

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS APPLICATIONS 5

Theorem 2.1. Consider a fine partitioning {i} of size n and a coarse one {A} of
size nc, obtained by merging elements from the fine one. I.e., each A consists of some
fine-level vertices and the set {A} provides their nonoverlapping partitioning. Let 1A
for each coarse vertex A be a vector of size n (the number of fine vertices) with nonzero
entries equal to 1 at positions i ∈ A and zero elsewhere. Let 1A form the Ath column
of the n× nc rectangular matrix P referred to as the piecewise constant interpolation
(or prolongation) matrix. Finally, consider the modularity change matrix ∆Q =
(∆Qij) and the coarse counterpart ∆Qc = (∆QAB). Then, the following relation
holds

∆Qc = P T (∆Q)P.

Proof. Using the symmetry of the ∆Q matrices and breaking each aggregate A into
the union of its individual fine vertices via the additivity proven in Lemma 2.2, we
have

∆QAB =
∑
i∈A

∑
j∈B

∆Qij(2.9)

=
∑
i∈A

∑
j∈B

2

(
1

T
aij − αiαj

)
(2.10)

= 2

(
1

T
aAB − αAαB

)
.(2.11)

Consider now the (A,B)-entry of the triple matrix product P T (∆Q)P . Letting P =
(PiA) where PiA = 1 if i ∈ A and PiA = 0 otherwise, we have(

P T (∆Q)P
)
AB =

∑
i

∑
j

PiA(∆Q)ijPjB

=
∑
i∈A

∑
j∈B

(∆Q)ij

=
∑
i∈A

∑
j∈B

2

(
1

T
aij − αiαj

)
= ∆QAB,

which shows the desired result. �

Remark 2.2. We remark that the triple-matrix product P T (∆Q)P is performed in
practice exploiting the sparsity of A = (aij) as follows

P T∆QP =
2

T
P T
(
A− r

T
rT
)
P =

2

T

(
P TAP − P T r

T
(P T r)T

)
.

That is, we perform separately the triple-matrix product of sparse matrices Ac =
P TAP and the matrix-vector product rc = P T r. Note that the coarse modularity
change matrix (∆Q)c has the same rank-one modified form as ∆Q = 2

T
A − 2

T 2 rr
T ,

i.e.,

(∆Q)c =
2

T
Ac −

2

T 2
rcr

T
c .

6 BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

This means, that in practice we can keep the sparse matrix A and the vector r, from
which we can easily get any entry of ∆Q. The same holds at any coarse level; i.e.,
we can form and keep the sparse matrix Ac = P TAP and the coarse vector rc = P T r,
from which we can obtain any required entry of (∆Q)c.

Remark 2.3. Consider the coarse ones vector 1c = (1) ∈ Rnc. Since P1c = 1–the
fine-level unit vector, we have that (∆Q)c1c = P T (∆Q)(P1c) = P T (∆Q)1 = 0, i.e.,
the zero rowsum property of ∆Q is maintained at coarse levels.

Corollary 2.1. Remark 2.3 implies that a recursive multilevel aggregation algorithm
which monotonically increases the modularity can stop only when we reach a situation
when all ∆QAB ≤ 0 for A 6= B with positive entries being only on its diagonal, i.e.,
∆QAA ≥ 0. The latter means that at the final coarse level ∆Q is actually a (dense)
weighted graph Laplacian matrix, where the modularity Q is related to the sum of the
diagonal diagonal entries of ∆Q,

Q =
1

2

∑
A

∆QAA.

The latter formula actually holds at all stages of aggregation.

3. Aggregating vertices based on edge weights: a parallel algorithm

We are given a graph G with a vertex set {1, 2, . . . , n} and an edge set E = {e =
(i, j)} ⊂ V ×V. Each edge e also comes with a weight we. Although the algorithm can
be written for general weights, here our focus on the choice we = ∆Qij, e = (i, j),
where ∆Q is the modularity change matrix from the previous section and where
aij = 1, for example. Our goal is to create coarse graph by aggregating vertices into
aggregates A giving priority when merging for edges with a larger weight.

A simple parallel algorithm (similar to [6]) can be formulated as follows.

Algorithm 3.1 (Parallel pairwise aggregation using ∆Q weights).

• Given A and r, compute a vector p = (pi), which stands for pointer. For each
vertex i,

pi = argmax
j : i 6=j

{∆Qij | ∆Qij > 0}.

Vertex i ”points” to vertex pi; this is the neighbor it would like to merge with
most. If no j gives ∆Qij > 0, then pi = −1. (Here, we exploit the sparsity of A as if

there is not an edge between i and j then ∆Qij is negative, and we will not merge this pair. That is, we

only need to consider∆Qij for j adjacent to i.) Note that p may be computed in parallel.
• Based on computed p, find the pairs i and j such that pi = j and pj = i. Each

such pair gives a locally maximal edge: an edge whose ∆Qij value is maximal
among all neighboring edges. Each pair (i, j) is to be merged into a single
aggregate A = {i, j}, and vertices not in such pairs are left alone as singleton
aggregates.
• Construct the coarsening matrix R = P T via p. R has a row for each aggregate
A, with non-zero values, 1, only in columns i ∈ A.
• Compute the triple matrix product Ac = RAP and the vector rc = Rr.

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS APPLICATIONS 7

• If no more positive weights in the current ∆Q matrix are available (i.e., ∆Q is
a weighted graph Laplacian), the hierarchy is complete, then Exit. Otherwise
recur.
• On Exit, each (A, r, P), (Ac, rc, Pc), etc. correspond to a level in the hierarchy.

The algorithm may be modified also to go into the Exit state if the coarsening
factor is not good enough or if the size of the coarsest level is small enough. If A is
n× n and Ac is m×m then the coarsening factor is m

n
.

3.1. Some heuristics. The number of merges at each coarsening step is what de-
termines the speed of the algorithm. To improve this, we introduce a heuristic
parametrized over a natural number k. In the above method we do one pass over
each vertex to determine the neighbor it would like to merge with most. We modify
this slightly:

• If pi = −1 (i has not found a match to merge with) then we take

pi = argmax
j : i 6=j, pj=−1

{∆Qij | ∆Qij > 0}.

If the set is empty, then pi remains set to −1.
• Find the pairs where pi = j and pj = i.
• Any i that does not belong to such a pair has pi reset to −1. If i does belong

to such a pair then pi is left alone.
• repeat k times

Algorithm 3.1 is the case where k = 1.
This is the same as keeping a ’liveness’ value for each edge, any any edge found

to be maximal compared with its live neighbors is taken as a coarsening pair and it
and all its (edge) neighbors are remove from examination. A similar heuristic can be
performed where only the locally maximal edges are killed, and not their neighbors
as well, though this leads to a method which does not perform pairwise merging.

These heuristics tend to only very slightly hurt the maximal modularity (for small
k), but can significantly improve the coarsening factor. In cases where the coarsening
factor is significantly poor, then partitioning may have to be halted early, thus not
achieving a good Q value, so improving the coarsening factor can actually increase
the maximal Q when actually partitioning.

Additionally, changing the random weights at every iteration appears to improve
the coarsening factor without hurting the modularity. That is, we compute ∆Qij as

∆Qij = 2(
aij
T
− αiαj)xixj or ∆Qij = 2(

aij
T
xixj − αiαj)

where x = (xi) is a vector with entries xi ∈ (1− ε, 1 + ε) for some ε > 0.
Other options such as aggregating leaves as a first step can also help improve the

coarsening factor.

3.2. Results. We compare our proposed method in both a parallel and serial setting
to an implementation of Louvain’s method ([12]) by examining timings, maximum
modularity scores, and the size of the coarsest level.

8 BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

Dataset |V |, |E| max Q L. max Q # coarse L. # coarse time (s)
parallel

time (s)
L. time (s)

ENZYMES g479 [11] 28, 49 0.518 0.548 5 5 0.0 0.0 0.0

ENZYMES8 [11] 88, 113 0.640 0.665 6 6 0.0 0.0 0.0

ca-netscience [11] 379, 914 0.843 0.843 18 19 0.0 0.0 0.0
GD00 c [11] 638, 1025 0.710 0.714 18 18 0.0 0.0 0.0

G11 [11] 800, 1600 0.837 0.833 13 14 0.0 0.0 0.0

fe-4elt2 [11] 11K, 33K 0.908 0.910 30 30 0.0 0.0 0.0
road-usroads [11] 129K, 160K 0.979 0.979 191 190 0.6 0.4 0.8

roadNet-CA [11] 2M, 2.2M 0.992 0.992 410 385 10.1 5.0 19.2
road-germany-osm [11] 12M, 12M 0.962 0.963 1M 847K 122.7 35.3 145.1

socfb-B-anon [11] 3M, 21M 0.128 0.729 2.1M 321 28.4 25.1 73.5

soc-livejournal [11] 4M, 23M 0.210 0.770 1.2M 1702 80.8 66.2 221.9
soc-orkut [11] 3M, 106M 0.032 0.687 1.6M 45 180.9 119.3 327.4

soc-sinaweibo [11] 59M, 272M 0.000 0.554 58M 161 105.3 62.9 1016.8

Table 1. Comparison of the proposed method with an implementation
of Louvain’s algorithm. L. stands for Louvain. Coarsening was halted
once the coarsening factor was 0.99. Parallel timings were done with 8
threads.

Table 1 summarizes the modularity of the presented algorithm (without any heuris-
tics or optimizations), the modularity for a Louvain implementation [12], the size of
the coarsest levels, and the times taken to compute the partitions.

The coarsening factor for the proposed method typically increases monotonically
until hitting 1, though sometimes it hits a bottleneck, decreases, and increases until
hitting 1. The results indicate that if the graph is well-suited to the proposed method
(the coarsening factor does not approach 1 too quickly), then the computed partition
is of high quality, and can be computed quickly. With the datasets socfb-B-anon,
soc-livejournal, soc-orkut, and soc-sinaweibo the proposed method was not
able to coarsen enough in order to obtain a good modularity before hitting a coars-
ening factor of 0.99. To improve the performance of the algorithm on graphs such as
these as well as networks in general, heuristics can be added to quicken the coarsening,
such as those in Section 3.1.

However, the social networks were still unable to be coarsened quickly (other graphs
did get a speed up) despite the heuristics. This is likely due to the small number
of outliers with high degree. The union of these nodes’ neighborhoods make up a
good portion of the network, and so prevent good coarsening. Although the pairwise
method fails to run fast enough, it is able to approach the modularity of Louvain’s
method after running to completion, though not quite reach it. Despite failing time-
wise on large social networks, the proposed method appears to work quite well (both
modularity-wise and time-wise) for simpler networks such as road networks or graphs
given by problems on meshes of any size. On these type of graphs, our method
achieves a similar modularity to the Louvain procedure and attains a speed-up as
well, which can be further improved with the heuristics discussed.

4. Applications

4.1. Using edge weights coming from adaptive AMG. Consider a system Âx =

b with a s.p.d. (symmetric positive definite) matrix Â = (âij). In the so-called

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS APPLICATIONS 9

adaptive AMG ([4], [3], [8]), also called bootstrap AMG ([2]), a vector w = (wi) is

constructed such that Âw ≈ 0. This is done by performing iterations on the trivial

system Âx = 0 starting with a random initial iterate. The iteration process is based
on a convergent smoother (like Gauss-Seidel) or on an already available convergent
solver to test its convergence properties. Note that the iterates are the actual errors
(since the exact solution is 0), so one can monitor the error decay (in ‖.‖Â-norm)
during the iteration process. If the convergence is deemed unsatisfactory, the current
iterate (after normalization) is chosen as w. We note that in such a case we will

have Âw ≈ 0. Such near-null components of Â are referred to as algebraically smooth
vectors associated with the solver we test.

Note that Âw ≈ 0 means that for each i, we have
∑
j

âijwj ≈ 0, which implies

−
∑
j 6=i

wiâijwj ≈ âiiw
2
i ≥ 0.

Therefore, if we consider the matrix A = (aij) where

(4.1) aij = −wiâijwj,

its rowsums will be non-negative. That is, we can use A as the adjacency matrix

of the sparsity graph of the original matrix Â where aij can serve as edge weights,
which can be positive and negative. Nevertheless, the positive rowsum property (2.1)
of A is ensured, which was the only requirement for our modularity-based coarsening
algorithm. For some PDE-discretization matrices one can simply take w = (1) which
makes aij = −âij.

4.1.1. Detecting dominant anisotropy in finite element matrices. In our tests, we used

the matrix Â coming from finite element discretization of the highly anisotropic dif-
fusion equation

− div(εI + bbT)∇u) = f(x), x ∈ Ω ⊂ Rd (d = 2 or 3).

For small ε > 0, the dominant direction of the d × d diffusion tensor εI + bbT is
b ∈ Rd. We choose

b =

[
cos θ
sin θ

]
,

for some angle θ in two dimensions (d = 2), and

b =

 cos θ cosϕ
sin θ cosϕ

sinϕ

 ,
for some angles θ and ϕ in three dimensions (d = 3). We let ε = 0.001.

The polyhedral domains Ω shown in Fig. 1, is covered by an unstructured tetra-
hedral mesh and the above PDE is discretized using continuous piecewise linear ele-

ments. From the computed stiffness matrix Â, using symmetric Gauss-Seidel itera-

tions applied to Âx = 0, and starting with a random initial iterate, we generate the
corresponding algebraically smooth vector w. Then, we apply our modularity based
coarsening algorithm to generate aggregates of mesh vertices.

10 BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Communities found on the star, square-disc,
inline-tri, disc-nurbs, and fischera meshes from MFEM
[15] along with a sphere mesh, discretized using MFEM with no
boundary conditions. The top versions of the coarsening used weights
determined by taking w = (1) while the bottom versions had weights
determined by the computed w.

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS APPLICATIONS 11

(a) (b)
(c)

(d)

Figure 2. Portions of the two dimensional meshes used in Figure 1.

Figure 1 shows the results of the proposed clustering method applied to different
meshes for different angles, where w is as above (giving aij = −wiâijwj for i 6= j and
aii = 0), as well as when w = (1) (giving aij = −âij for i 6= j and aii = 0. The gray
line in the subfigures indicates the direction of anisotropy. Figure 2 has pictures of
important subsections each of the two dimensional meshes for reference. Meshes 2(a),
2(c), 2(b), 2(d) correspond to Figures 1(a) and 1(d), Figures 1(b) and 1(e), Figures
1(c) and 1(f), and Figures 1(g) and 1(j), respectively.

We found that using w = (1) can allow the proposed clustering method to aggregate
in the direction of anisotropy, as shown in Figures 1(a), 1(b), 1(c), 1(g), 1(h), and

1(i). However, using w corresponding to an approximation to Âx = 0 (as explained
above) allows us to coarsen in the direction of anisotropy even more, as depicted in
Figures 1(d), 1(e), 1(f), 1(j), 1(k), and 1(l).

Taking w = (1) can cause coarsening which is highly dependent on the structure
of the mesh, while the proposed weights are not dependent. For example, in Figure
1(a) the community structure follows the mesh structure nearly exactly on the lower
half. This happens similarly in Figures 1(c) and 1(g) but to a lesser extent. Using
the other weight choice on these meshes remedies this defect. The correct w weights
also appear to form smaller aggregates, which end up aligning more closely with the
direction of anisotropy.

Figures 1(h), 1(i), 1(k), and 1(l) are three dimensional meshes which we can sim-
ilarly detect anisotropy in. This detection occurs throughout the mesh, not just on
the boundary.

12 BENJAMIN QUIRING AND PANAYOT S. VASSILEVSKI

5. Concluding remarks

In this paper, we demonstrated that a parallel pairwise aggregation algorithm for
community detection optimizes modularity as well as the Louvain method on certain
classes of graphs and is also faster than the Louvain method on these classes. We
also found that the social networks class of graphs do not allow the proposed method,
even with heuristics, to work well due to the high-degree nodes. Finally, we applied
the aggregation algorithm to the problem of finding communities aligning with the
dominant direction of anisotropy in finite element discretizations and found that the
method indeed detects the direction of anisotropy in both two and three dimensions
on various meshes.

PROPERTIES OF THE GRAPH MODULARITY MATRIX AND ITS APPLICATIONS 13

References

[1] V. D. Blondel, J.-L. Guillaume , R. Lambiotte, E. Lefebvre, ”Fast unfolding of communities in
large networks,” Journal of Statistical Mechanics: Theory and Experiment. 2008 (10): P10008,
doi:10.1088/1742-5468/2008/10/P10008.

[2] A. Brandt, J. Brannick, K. Kahl, and I. Livshitz, ”Bootstrap AMG”, SIAM J. Sci. Comput.
33 (2011), pp. 612–632.

[3] M. Brezina, R.D. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, ”Adaptive
smoothed aggregation αSA multigrid”, SIAM Rev. 47 (2005), pp. 317–346.

[4] M. Brezina, R.D. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, ”Adaptive
algebraic multigrid”. SIAM J. Sci. Comput. 27 (2006), pp. 1261–1286.

[5] M.E.J. Newman, “Networks. An Introduction”, Oxford University Press, New York, 2010.
[6] M. T. Jones and P. E. Plassmann, ”A Parallel Graph Coloring Heuristic,” SIAM Journal on

Scientific Computing, 14(3), (1993), pp. 654669.
[7] P. D’Ambra, S. Filippone, and P. S. Vassilevski, ”BootCMatch: A Software Package for Boot-

strap AMG Based on Graph Weighted Matching, ACM Transactions on Mathematical Software
(TOMS) 44(4) (2018) Article No. 39.

[8] P. D’Ambra and P. S. Vassilevski, ”Adaptive AMG with coarsening based on compatible weighted
matching”, Computing and Visualization in Science, 16, (2013), pp. 59–76.

[9] P.S. Vassilevski, Multilevel block factorization preconditioners, matrix-based analysis and algo-
rithms for solving finite element equations, Springer, New York, 2008.

[10] J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, 2014.
snap.stanford.edu/data.

[11] R. Rossi and N. Ahmed, The Network Data Repository with Interactive Graph Analytics and
Visualization, 2015. networkrepository.com

[12] V. D. Blondel, J.-L. Guillaume , R. Lambiotte, E. Lefebvre, Implementation of the Louvain
method. sites.google.com/site/findcommunities/.

[13] S. Ghosh, et al., “Distributed Louvain Algorithm for Community Detection”.
[14] J. Zeng and H. Yu, “A Scalable Distributed Louvain Algorithm for Large-scale Graph Community

Detection”
[15] MFEM: Modular Finite Element Methods Library. mfem.org.

Acknowledgment

This work is performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
This work of the second author was partially supported by NSF under Grant DMS-
1619640. The LLNL IM release number is LLNL-TR-779424.

Center for Applied Scientific Computing, Lawrence Livermore National Labora-
tory, P.O. Box 808, L-561, Livermore, CA 94551, U.S.A.

E-mail address: bq2367@gmail.com, quiring1@llnl.gov

Department of Mathematics and Statistics, Portland State University, Portland,
Oregon, USA, and, Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, P.O. Box 808, L-561, Livermore, CA, USA.

E-mail address: panayot@pdx.edu, vassilevski1@llnl.gov

