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Single-Group Statistical Tests with a Binary Dependent Variable 
 
z test for proportions 
Many surveys use a simple statistical test that is analogous to the single sample t test we used to investigate 
whether a company paid a higher than (state) average wage.  In other cases, we may have a single binary 
variable, such as a political poll about whether one candidate (or side of an issue) would receive more votes 
than an alternative candidate or whether there are more survey responses favoring one choice over another 
when there are two possible options, such as “yes or no, do you support affirmative action in college 
admissions?”. For these kinds of research questions, the statistical test investigates whether there is a 
significantly higher percentage choosing one option than the other. 
 
There are two tests designed for this circumstance. One of these tests is a z test that is very similar to the 
single-group t test, called the z test for the difference between two proportions.  The formula looks like this: 
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In the formula, p is the proportion of the sample choosing one of the options in the survey (e.g., “yes”),  is the 
null hypothesis value (i.e, the proportion expected if there is no difference between “yes” and “no”), and n is the 
sample size. If you look carefully, you will see that this formula parallels the single-group t test, because the 
denominator (bottom portion) is a standard error, which we could call s , 
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where  1 /s n     for the standard error.1  The top part of the equation is parallel as well, because it 

concerns the difference between the sample and population means ( X  ).   
 
As an example, I use data from a YouGov survey about voter participation in the 2020 election.2  The results 
presented here (n = 1,092) concern whether those who were surveyed were more likely to support the 
mandate in the Affordable Care Act to require health insurance for everyone. The percentage who said they 
supported the mandate was 45.2% (n =  494) and those who opposed was 54.8% (n = 598). To determine 
whether this is a significant difference, we need only choose one proportion—the proportion for either support 
or oppose. It does not matter. The null hypothesis is that the proportion in the population who support and 
oppose the measure are perfectly split 50/50 (i.e., the proportion is .50), so  = .5. If the proportion of the 
sample who support vs. oppose differs from what we expect due to sampling variability (chance), then one 
option is favored significantly more than another. 
 
If we plug in our obtained values (but rounding in my example just to simplify), we get the following result: 
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This obtained value is compared to the critical value obtained in the z-table (Table C.2 in the text) that 
corresponds to the outer 2.5% of the sampling distribution, which is our conventional significance cutoff.  With 

 
1 This formula has a parallel to our single-group t test standard error formula, /

Y
s s n , because  1  is a convenient formula for the calculation of 

the variance of a proportion (i.e., the test is really parallel to the single-group t test where the variance is known, because we use the population variance 
 1  ). This form is called the score test. Another form uses p(1-p) instead and is called the Wald test.  

2 These results use a random sample taken from a YouGov/Harvard/MIT survey called the Cooperation Election Study (CES) conducted by Stephen 
Ansolabehere & Brian Schaffner, 2022, "CES Common Content, 2021", https://doi.org/10.7910/DVN/OPQOCU 
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the z test, the critical value is always 1.96 for two-tailed significance regardless of sample size (i.e., there is 
only one normal curve).  Because our computed value of 3.31 exceeds this cutoff value (p < .05), there is a 
significant difference between the proportion that oppose the mandate and those that support the mandate 
(significantly more oppose). 
  
With a z-proportions test, one can also construct “confidence limits” or a “confidence interval.”  The confidence 
limits describe the amount of sampling variability that might be expected from random chance. In other words, 
if we were to draw a large number of random samples from the same population, we would not get the same 
proportion estimate (.55 who oppose) each time.  We would expect some variability in this estimate resulting 
from random sampling chance.  The 95% confidence interval is an estimate of the range of these possible 
values (more precisely, 95% of this range).  In the case of the z test, we use the normal distribution and our 
estimate of standard error to construct the interval using the following formula.   
 

  criticalp z s , 
 

where the criticalz is the critical value, which is 1.96 whenever the normal distribution is used.  For our example 
above, we get the following values for the lower confidence limit (LCL) and the upper confidence limit (UCL): 

 

   2.01 1.55 1.96 .55 .5 03 .5LCL       

    8.01 1.55 1.96 .55 .5 03 .5UCL       
 

Thus, the 95% confidence interval is .52-.58. This interval does not include the null hypothesis value of .50, 
suggesting that the difference from an equal proportion is unlikely to be due to random sampling chance.  
Whenever the confidence limits include the null value, you will find that the significance test will have a non-
significant result.  Half of this confidence interval is what is commonly called the margin of error, and is typically 
expressed in terms of a percentage. We can just use the .03 subtracted to find the confidence interval 
multiplied by 100 to find a percent (i.e., .03 × 100 = 3.0%) or we can compute the margin of error by subtracting 
the LCL from the UCL and dividing by two [(.58 - .52)/2 × 100 = .06/2 × 100 = 3.0%]. The two methods are 
equivalent but may differ slightly depending on whether or when rounding is used. 
 
Chi-square test 
A second, equivalent test for this problem is a chi-square test.  The chi-square compares frequencies obtained 
in the sample to those expected according to the null hypothesis (i.e., no difference in the population).  The chi-
square formula looks like this: 
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where  is the summation sign, indicating addition across all the “cells,” O is the observed frequency 
(obtained from the survey), and E is the frequency expected if the two “cells” were equal.  If we translate our 
voter survey into frequencies, we would obtain the following result displayed in a two-cell table: 
 

Oppose Support Total 
598 494 1092 

 
Using the chi-square formula, we would get the following result (note: expected frequencies often have 
decimals), where E = 1092/2 =546: 
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This computed value is compared to a critical value obtained from the chi-square table (Table C.4 in the text).  
It is a 1-degree of freedom (df) test, and chi-square for a two-tailed 1-df test is always 3.84.  Our computed 
value does exceed this value, so voters were significantly more likely to oppose than support the mandate.   
 

The z test and the chi-square test are equivalent, and, in fact, 2 2z  . We should expect them to always lead to 
the same conclusion. Note that because of my rounding of the response proportions initially, these values are 

only approximately equal here,  2
3.31 9.90 . 

 
More than Two Cells 
The chi-square formula is quite general, and as long as we can compute the expected frequencies based on 
what is expected due to chance (or another null hypothesis), we can simply employ the same equation to test 
whether any of the cell frequencies are different from one another whether there are three, four, or more cells.  
For example, we could compare Republicans, Democrats, and independents or yes, no, and undecided or 
multiple candidates, in which case expected frequencies would be computed by multiplying n by .333.  
 
Effect Size 
It seems that researcher's rarely report effect size for simple chi-square tests like these (probably because 
software packages typically do not print it out), but it is useful to go beyond just determining significance.  
Cohen's w (Cohen, 1988) is based on the magnitude of the differences between the observed and expected 
values, and so it is easily computed once the chi-square has been obtained. Cohen suggested that .1 is small, 
.3 is medium, and .5 is large. 
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SPSS 
Please note that when using the menus, there are a couple of ways to obtain the single group z-proportions 
test. The Analyze -> Nonparametric tests -> Legacy dialogs -> binomial which gives simpler output and does 
not require defining the variable type, but it uses the Fisher’s exact test that I do not usually recommend.3     
 
nptests   /onesample test (mandate) binomial (testvalue=.5 successcategorical=list(1) likelihood ). 
*For binomial (z-proportion) test, successcategorical=list(1) chooses the value of 1 (Biden) as the comparison  
proportion 
 
*The (1) refers to the group with code = 1. The variable must be nominal for the successcategorical command to 
be recognized.  To change the variable to nominal use:  variable level mandate(nominal). This only matters if 
testvalue is not .5. 
 
*testvalue=.5 gives the null proportion (default and can be omitted) 
*likelihood gives CIs based on the sample SE estimate (Wald) rather than the null value SE estimate. 
 

 
 

 
 

 
3 When using Analyze -> Nonparametric tests -> One sample -> settings tab, and then check either (Binomial test) or (Chi-square test). SPSS may 
require that you assign the variable as binary "nominal". 
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You can also conduct the chi-square test with the nptests procedure—there is no need to do chi-square and 
the z-test, and for this problem, the z-test is more common because you can get confidence intervals.  
 
nptests    /onesample test (mandate) chisquare. 

 
R 
The lessR function Prop_test gives frequencies but also the chi-square test. You could also use the 
summarytools package freq function for the frequencies and proportions of each variable. The R base 
function prop.test requires manual entry of frequency of one cell and the total n, so you must obtain the 
frequencies first.  
 
> Prop_test(mandate) 
 
<<< Chi-squared test for given probabilities  
 
variable: mandate  
 
--- Description 
                  0         1 
---------  --------  -------- 
observed        598       494 
expected    546.000   546.000 
residual      2.225    -2.225 
stdn res      3.147    -3.147 
 
--- Inference 
 
Chi-square statistic: 9.905  
Degrees of freedom: 1  
Hypothesis test of equal population proportions: p-value = 0.002 
 

The above analysis provides a significance test of the hypothesis, but if you want confidence intervals you 
need to do another analysis. 
> #then enter in the number of cases into prop.test(x,n,p,continuity correction option) 
> #where x is the number of successes (oppose mandate) 
> prop.test(598, 1092, p=0.5, correct=FALSE)  
 
 1-sample proportions test without continuity correction 
 
data:  598 out of 1092, null probability 0.5 
X-squared = 9.9048, df = 1, p-value = 0.001649 
alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval: 
 0.5179826 0.5769216 
sample estimates: 
       p  
0.547619  

 

Sample write-up 
A z-proportions test was used to test whether significantly more respondents support or oppose the health 
insurance mandate.  Of the 1092 voters surveyed, 598 (54.8%) opposed the mandate and 463 (45.2%) 
supported the mandate.  The difference was statistically significant, z =3.12, p = .002, indicating that the 
opposition to the mandate was greater than what would be expected due to chance.4  The margin of error for 
this survey was 3.0%.5 
 
Note that, the z value can be obtained from the chi-square in the R output by taking the square root (square root of 9.9048 = 3.12). 

 
4 In practice, because the chi-square and the z-proportion tests are equivalent, there would be no need to do both. Either one might be used by a 
researcher, although survey results are more often reported in the media in terms of percentages and margin of error.  For the chi-square test, I would 
suggest also reporting Cohen's w. For example, 2(1) = 9.90, p = .002, Cohen's w = .10. 
5 Confidence limits could be reported instead of the margin of error, e.g., z =3.12, p = .002, 95% CI[.52,.58]. 


