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Latent Class Analysis

• Latent class analysis (LCA) is a general framework for 
grouping individuals into probable classes

• Difference from factor analysis: in LCA we are grouping 
individuals using a set of variables not grouping variables 
using a set of people

• The number of classes and their interpretation is 
unknown and must be determined

• There are a variety of variations on latent class models, 
specific estimation approaches, and applications
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General Modeling Approaches
• There are a couple of general approaches that have many 

things in common, but I will focus primarily one that is 
implemented within a structural equation modeling 
framework (available in Mplus; Muthén & Muthén, 1998–
2018) 

• This approach follows a confirmatory strategy because it 
can be used with larger predictive models with latent 
classes as predictors or outcomes (“auxiliary variables”, 
“distal outcomes”)

• Other software packages include: poLCA and lcca
packages in R, PROC LCA, which is a free macro for SAS 
(Lanza, Collins, Lemmon, & Schafer, 2007), Latent Gold 
(Vermunt & Magidson, 2005), and Mx (Boker et al., 2012) 
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Concepts

• One can think about latent class models within a kind of 
generalized  structural equation modeling framework in 
which latent classes are latent categorical variables 
(Muthén, 2001)1

• This approach allows latent classes to be used with larger 
predictive models with latent classes as outcomes or 
predictors

1Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: 
New opportunities for latent class-latent growth modeling. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of 
change (pp. 291–322). Washington, DC: American Psychological Association.
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Concepts

• A set of measures can be used to define a latent 
categorical variable

• These indicators can be binary (latent class analysis) or 
continuous (latent profile analysis) 
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Concepts

• Categories are unobserved or unknown rather than 
known

• For example, if we have a set of political opinion items 
(agreement or yes/no) for issues such as abortion, taxes, 
immigration, crime, global warming, etc. 

• From responses, people can be grouped in to some set of 
homogeneous classes, which might be two (e.g., 
conservative vs. liberal, three (progressive, libertarian, 
conservative), or four (libertarian, MAGA, moderate 
conservative, socialist).

• Contrast with registered or self-identified groups like 
Democrat, Republican, Green Party, Independent
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Concepts

• The number of classes and their meaning must be 
decided upon based on fit with the data

• Typically several models are estimated, specifying one, 
two, three, four or more classes, and fit is compared 
among these models

• Although ideally these could be thought of as nested 
models, the usual likelihood ratio test does not work well

• Sample size adjusted Bayesian Information Criteria 
(aBIC, ABIC, or SABIC; Sclove, 1987) or bootstrapped 
likelihood ratio test (BLRT; McLachlan & Peel, 2000;) 
work best (Nylund et al., 2007)
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Example2

• Determining multimorbidity classes based on set of eight 
chronic conditions (e.g., diabetes, heart disease, cancer) 
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Number Classes

classes VLMR LR BLRT p
1 na na
2 19.962 <.001
3 75.699 0.0507
4 54.781 0.0118

2Quiñones, A. R., Newsom, J. T., Elman, M. R., Markwardt, S., Nagel, C. L., Dorr, D. A., ... & Botoseneanu, A. (2021). Racial and ethnic 
differences in multimorbidity changes over time. Medical care, 59(5), 402-409.



Posterior Class Probabilities, Response 
Probabilities, and Entropy

• After choosing the optimal number of classes, several 
results are of interest

• Posterior class probabilities give the estimated number of 
cases and proportion that mostly likely belong to a 
particular class – probable class membership not 
assigned to class

• Response probabilities (binary) or conditional intercepts 
(continuous) are obtained for each indicator in each 
class, which help identify meaning of classes

• Entropy is an estimate of the homogeneity within classes 
and class separation (higher numbers better)
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Example

Posterior Class Probabilities

• For the multimorbidity example, these are the class 
memberships for 3 classes

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent
Classes

1       2214.06843          0.30509
2       2719.39759          0.37473
3       2323.53398          0.32018
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Example

Response Probabilities

• Response probabilities are conditional probabilities of the 
value of 1 on the indicator (or conditional means/intercepts 
in the case of continuous indicators) given a membership in 
a particular class
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Example
Class 1: Multimorbidity
Class2: Hypertension/arthritis 
Class3: Healthy
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RESULTS IN PROBABILITY SCALE

Two-Tailed
Estimate       S.E.  Est./S.E.    P-Value

Latent Class 1

BP14
Category 1         0.071      0.017      4.128      0.000
Category 2         0.929      0.017     54.136      0.000

DIAB14
Category 1         0.572      0.040     14.236      0.000
Category 2         0.428      0.040     10.634      0.000

CANCR14
Category 1         0.714      0.015     47.850      0.000
Category 2         0.286      0.015     19.199      0.000

LUNG14
Category 1         0.689      0.028     24.544      0.000
Category 2         0.311      0.028     11.062      0.000

HRT14
Category 1         0.297      0.069      4.276      0.000
Category 2         0.703      0.069     10.119      0.000

STRK14
Category 1         0.737      0.042     17.732      0.000
Category 2         0.263      0.042      6.316      0.000

ARTH14
Category 1         0.049      0.014      3.609      0.000
Category 2         0.951      0.014     70.020      0.000

DEP14
Category 1         0.708      0.038     18.437      0.000
Category 2         0.292      0.038      7.595      0.000

Latent Class 2

BP14
Category 1         0.074      0.067      1.116      0.265
Category 2         0.926      0.067     13.905      0.000

DIAB14
Category 1         0.627      0.267      2.352      0.019
Category 2         0.373      0.267      1.397      0.162

CANCR14
Category 1         0.797      0.027     30.001      0.000
Category 2         0.203      0.027      7.644      0.000

LUNG14
Category 1         0.949      0.107      8.884      0.000
Category 2         0.051      0.107      0.481      0.630

HRT14
Category 1         0.700      0.086      8.105      0.000
Category 2         0.300      0.086      3.476      0.001

STRK14
Category 1         0.910      0.056     16.248      0.000
Category 2         0.090      0.056      1.616      0.106

ARTH14
Category 1         0.253      0.034      7.537      0.000
Category 2         0.747      0.034     22.281      0.000

DEP14
Category 1         0.945      0.017     55.588      0.000
Category 2         0.055      0.017      3.206      0.001

Latent Class 3

BP14
Category 1         0.598      0.530      1.128      0.259
Category 2         0.402      0.530      0.757      0.449

DIAB14
Category 1         0.911      0.037     24.445      0.000
Category 2         0.089      0.037      2.391      0.017

CANCR14
Category 1         0.774      0.014     53.928      0.000
Category 2         0.226      0.014     15.744      0.000

LUNG14
Category 1         0.900      0.024     37.198      0.000
Category 2         0.100      0.024      4.152      0.000

HRT14
Category 1         0.809      0.020     41.243      0.000
Category 2         0.191      0.020      9.758      0.000

STRK14
Category 1         0.968      0.009    111.104      0.000
Category 2         0.032      0.009      3.695      0.000

ARTH14
Category 1         0.316      0.059      5.388      0.000
Category 2         0.684      0.059     11.644      0.000

DEP14
Category 1         0.934      0.017     54.921      0.000
Category 2         0.066      0.017      3.880      0.000



Example

Entropy

• Higher values indicate greater within-class homogeneity 
and thus greater differences between class

• A quality or reliability of classification measure of sorts
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CLASSIFICATION QUALITY

Entropy                         0.363



Latent Transition Models

• Latent transition models are a longitudinal application of 
latent class models – how stable or changing is class 
membership over time
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Latent Transition Models

• Transition probabilities indicate the odds of probable 
membership in on one outcome class at the later time 
point given probable membership in a certain class at 
the initial time point

• With two classes a logistic regression, with three or 
more, a multinomial logistic regression
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Latent Transition Models

• Results from three-class model 1998 predicting three-
class model 2014

• Odds ratios: last class of outcome is referent

• Class 1: Multimorbidity; Class2: Hypertension/arthritis;  
Class3: Healthy
Logits for the Classification Probabilities for the Most Likely Latent 
Class Membership (Column)

by Latent Class (Row)

1        2        3

1     13.788   10.204    0.000
2     13.407   12.724    0.000
3     13.204   13.034    0.000
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Growth Mixture Models

• Growth mixture models combine latent class analysis 
with growth curve models

• Two general types: multilevel regression approach to 
growth curve models and semiparametric (latent class 
growth curve models; Nagin, 1999; e.g., SAS or Stata) or 
structural equation modeling approach in software that 
can handle latent class models (e.g., Mplus)

• These are similar in their goals but the Nagin approach 
does not allow for random slopes within classes

• Valuable for classifying trajectories (e.g., increasing, 
decreasing, nonincreasing low, nonincreasing high)
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Growth Mixture Models

• Number of classes must be select using the same 
process as that described for latent class models

• Any of the parameters can differ across classes 
(intercept means, slope means, intercept variances, 
slope variances, intercept-slope covariance, occasion 
variances), typically at least intercepts and slope means)

• Often computationally intensive and can be difficult to 
estimate without convergence problems.  Constraining 
parameters equal across groups can help with estimation 
difficulty.
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Growth Mixture Models
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From Grimm, K. J., Ram, N., & Estabrook, R. (2016). Growth modeling: Structural equation and multilevel modeling approaches. Guilford Publications., p. 145



Growth Mixture Models

• Equal variances often assumed but can cause incorrect 
conclusions about the number of classes or biased 
estimates (Diallo et al., 2016; McNeish & Harring, 2021)

• May need at least 1,000 cases to make estimation with 
heterogeneous variances across classes
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Example3

• We examined changes in multimorbidity over 18 years in 
mid to late life (biennial) 

• Results concluded three classes (low, increasing, high)
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3 O'Neill, A. S., Newsom, J. T., Trubits, E. F., Elman, M. R., Botoseneanu, A., Allore, H. G., ... & Quiñones, A. R. (2023). Racial, ethnic, 
and socioeconomic disparities in trajectories of morbidity accumulation among older Americans. SSM-Population Health, 22, 101375.



Example
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Example

• Race and ethnicity differences of growth curve class membership
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Thank you!

Please contact Jason Newsom, newsomj@pdx.edu, with comments or questions.
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