Regression Example ${ }^{1}$

Years Since PhD			Number of Publications		
X	$X-\bar{X}$	$(X-\bar{X})^{2}$	Y	$Y-\bar{Y}$	$(X-\bar{X})(Y-\bar{Y})$
3	-4.67	21.81	18	-1.93	9.01
6	-1.67	2.79	3	-16.93	28.27
3	-4.67	21.81	2	-17.93	83.73
8	0.33	0.11	17	-2.93	-0.97
9	1.33	1.77	11	-8.93	-11.88
6	-1.67	2.79	6	-13.93	23.26
16	8.33	69.39	38	18.07	150.52
10	2.33	5.43	48	28.07	65.40
2	-5.67	32.15	9	-10.93	61.97
5	-2.67	7.13	22	2.07	-5.53
5	-2.67	7.13	30	10.07	-26.89
6	-1.67	2.79	21	1.07	-1.79
7	-0.67	0.45	10	-9.93	6.65
11	3.33	11.09	27	7.07	23.54
18	10.33	106.71	37	17.07	176.33
$\bar{X}=7.67$		$\sum(X-\bar{X})^{2}=293.33$	$\bar{Y}=19.93$		$\sum(X-\bar{X})(Y-\bar{Y})=581.67$

Unstandardized regression

 coefficient:$$
\begin{aligned}
B_{Y X} & =\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}} \\
& =\frac{581.67}{293.33} \\
& =1.98
\end{aligned}
$$

Regression line:

$\hat{Y}=4.74+1.98 X$

Intercept:

$$
\begin{aligned}
B_{0} & =\bar{Y}-B_{Y X} \bar{X} \\
& =19.93-1.98(7.67) \\
& =4.74
\end{aligned}
$$

Standardized regression coefficient:

$s d_{X}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{n-1}}=\sqrt{\frac{293.33}{15-1}}=4.58$
$s d_{Y}=13.82$
$\beta_{Y X}=B_{Y X}\left(\frac{s d_{X}}{s d_{Y}}\right)=1.98\left(\frac{4.58}{13.82}\right)=.66$
$B_{Y X} \pm\left(t_{d f f \alpha / 2}\right)\left(S E_{B}\right)=1.98 \pm(2.16)(.632)=.62,3.35$
$d f$ for the regression coefficient is $n-2$, so the two-tailed $\alpha=.05$ critical value, $t_{d f, \alpha / 2}$, from the Table C. 3 in the text is 2.16

[^0]
Computer Example Simple Regression

SPSS Syntax

*correlation test with regression is one-tailed, so request separate correlations procedure. correlations vars=yrsphd numpubs.
regression vars=yrsphd numpubs
/descriptives=mean stddev corr sig n
/statistics=anova coeff ses r ci
/dependent=numpubs /method=enter yrsphd.

SPSS Menus

Analyze -> Regression -> Linear, then drag over the dependent and independent variables, then click on the Statistics button and check the Confidence Intervals box.

Note that there are several important statistics that are normally obtained in the output that I have omitted and we are going to skip for now. We will cover all of them in detail evenutally.

Correlations

		yrsphd	numpubs
yrsphd	Pearson Correlation	1	.657
	Sig. (2-tailed)		.008
	N	15	15
numpubs	Pearson Correlation	.657	1
	Sig. (2-tailed)	.008	
	N	15	15

Descriptive Statistics

	Mean	Std. Deviation	N
yrsphd	7.6667	4.57738	15
numpubs	19.9333	13.82269	15

Model	Coefficients ${ }^{\text {a }}$								
	Unstandardized Coefficients			Standardized Coefficients		t	Sig.	95.0\% Confidence Interval for B	
		B	Std. Error	Beta	Std. Error			Lower Bound	Upper Bound
1	(Constant)	4.731	5.591			. 846	. 413	-7.347	16.808
	yrsphd	1.983	. 632	. 657	. 209	3.139	. 008	. 618	3.348

a. Dependent Variable: numpubs
graph
/scatterplot(bivar)=yrsphd with numpubs
For a scatter plot with regression line, obtain the scatterplot, click on the scatterplot chart in the output, go to the Elements menu, choose Fit Line at Total, then make sure the Linear radio button is chosen.

R Code

```
> #clear active frame from previous analyses
> rm(d)
> 1ibrary(haven)
> d = read_sav("c:/jason/spsswin/uvclass/ccwa2_2_2.sav")
>
> 1ibrary(1essR)
> #lessR
> Regression(NUMPUBS ~ YRSPHD,brief=TRUE)
    #note: we will later use lessR function Regression() without the brief statment, which gives more output
```


Some of the output has been omitted

(Unstandardized)

-- Estimated Mode1 for NUMPUBS

	Estimate	Std Err	t-value	p-value	Lower 95%	Upper 95%
(Intercept)	4.731	5.591	0.846	0.413	-7.347	16.808
YRSPHD	1.983	0.632	3.139	0.008	0.618	3.348

-- Mode1 Fit
Standard deviation of NUMPUBS: 13.823
Standard deviation of residuals: 10.818 for 13 degrees of freedom
95\% range of residual variation: $46.744=2$ * (2.160 * 10.818)
R-squared: 0.431 Adjusted R-squared: 0.387 PRESS R-squared: 0.308

Nul1 hypothesis of al1 0	population slope coefficients:	
F-statistic: 9.855	df: 1 and 13	p-value: 0.008

(Standardized)

```
> #In these two lines, I create standardized variables using the rescale command from lessR.
> #do not use the significance tests from this output, just the "Estimate" values.
> d$znumpubs = rescale(NUMPUBS)
> d$zyrsphd = rescale(YRSPHD)
> Regression(znumpubs ~ zyrsphd,brief=TRUE)
-- Estimated Model for znumpubs
```

	Estimate	Std Err	t-value	p-value	Lower 95\%	Upper 95\%
(Intercept)	0.0001	0.2020	0.000	1.000	-0.4364	0.4366
zyrsphd	0.6566	0.2091	3.140	0.008	0.2049	1.1084

lessR Scatterplot with Regression Line (produced by default from the unstandardized regression)

Example Write-Up

A simple regression analysis was conducted to examine the relationship between the years of experience of a faculty member and the number of peer-reviewed publications. Results indicated that the years of experience significantly predicted the number of publications, $b=1.98, S E=.632, b^{*}=.66$, $p=.01,95 \%$ Cls $[.62,3.35] .^{2}$ For each additional year of experience, the faculty member published approximately two (1.98) additional publications. Years of experience accounted for a large percentage of variance in the number of publications, $R^{2}=.44, F(1,13)=9.86, p=.01 .^{3}$

[^1]
[^0]: ${ }^{1}$ Numerical example from Cohen, Cohen, West, \& Aiken, 2003. The current text uses $s d$ instead of s for standard deviation and $S E_{B}$ instead of s_{b} for the standard error. For simple regression, the text uses $B_{Y X}$ for the regression slope at the beginning, but B_{I} will often be used later and is more common.

[^1]: ${ }^{2}$ The APA seventh edition of the publication manual gives conflicting information for the unstandardized and standardized regression coefficients. In Table 6.5 , the abbreviations are given as b for unstandardized and b^{*} for standardized. In the past and in the Table 7.25 example table, B is used or unstandardized and β is used for standardized and B and b seem to still commonly appear in APA journals.
 ${ }^{3}$ We will begin using R^{2}, the squared multiple correlation coefficient, instead of r^{2}, the regular square of the Pearson correlation coefficient, for any regression results.

