Salary and Publications Example (Cohen, Cohen, West, & Aiken Table 3.2.1)

SPSS Syntax

```
get file='c:\jason\spsswin\da2\ccwa3_2_1.sav'.
correlations vars=pubs time salary.
regression vars=salary time pubs
    /descriptives=mean stdev
    /statistics=anova coeff ses r ci
    /dependent=salary
    /method=enter pubs time.
```

Correlations

		number of publications	years since PhD	annual salary in dollars
number of publications	Pearson Correlation	1	.657	.588
	Sig. (2-tailed)		.008	.021
	Ν	15	15	15
years since PhD	Pearson Correlation	.657	1	.710
	Sig. (2-tailed)	.008		.003
	Ν	15	15	15
annual salary in dollars	Pearson Correlation	.588	.710	1
	Sig. (2-tailed)	.021	.003	
	Ν	15	15	15

Descriptive Statistics

	Mean	Std. Deviation	N
annual salary in dollars	53045.6000	7889.76815	15
years since PhD	7.667	4.5774	15
number of publications	19.933	13.8227	15

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	PUBS number of publication s, TIME years since PhD		Enter

a. All requested variables entered.

b. Dependent Variable: SALARY annual salary in dollars

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.728ª	.530	.452	5839.23054

a. Predictors: (Constant), number of publications, years since PhD

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4.623E8	2	2.312E8	6.780	.011ª
	Residual	4.092E8	12	3.410E7		
	Total	8.715E8	14			

ANOVA^b

a. Predictors: (Constant), number of publications, years since PhD

b. Dependent Variable: annual salary in dollars

Coefficients^a

		Unstandardize	Unstandardized Coefficients Standardized Coefficients		Standardized Coefficients			95.0% Confider	nce Interval for B
Model		В	Std. Error	Beta	Std. Error	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	43082.394	3099.493			13.900	.000	36329.178	49835.610
	years since PhD	982.867	452.057	.570	.262	2.174	.050	-2.081	1967.815
	number of publications	121.801	149.699	.213	.262	.814	.432	-204.364	447.966

a. Dependent Variable: annual salary in dollars

R Code

> corrvars = subset(d,select=c(PUBS,TIME,SALARY))

```
> library(correlation)
> correlation(corrvars, p_adjust="none")
```

Correlation Matrix (pearson-method)

> #clear active frame from previous analyses

Parameter1	Parameter2	r		95% CI		t(13)		ې
PUBS PUBS TIME	TIME SALARY SALARY	0.66 0.59 0.71		[0.22, 0.87] [0.11, 0.85] [0.31, 0.90]		3.14 2.62 3.64		0.008** 0.021* 0.003**

p-value adjustment method: none observations: 15

lessR

```
> rm(d)
> library(haven)
> d = read_sav("c:/jason/spsswin/da2/ccwa3_2_1.sav")
> library(lessR)
> Regression(SALARY ~ PUBS + TIME, brief=TRUE)
Number of cases (rows) of data: 15
Number of cases retained for analysis: 15
  BASIC ANALYSIS
-- Estimated Model for SALARY
               Estimate
                             Std Err
                                      t-value p-value
                                                              Lower 95%
                                                                            Upper 95%
(Intercept) 43082.394
                            3099.493
                                        13.900
                                                     0.000
                                                              36329.178
                                                                            49835.610
        PUBS
                121.801
                             149.699
                                          0.814
                                                     0.432
                                                                -204.364
                                                                              447.966
        TIME
                982.867
                             452.057
                                          2.174
                                                     0.050
                                                                  -2.081
                                                                             1967.815
-- Model Fit
Standard deviation of SALARY: 7,889.768
Standard deviation of residuals: 5,839.231 for 12 degrees of freedom 95% range of residual variation: 25,445.181 = 2 \times (2.179 \times 5,839.231)
R-squared: 0.530
                        Adjusted R-squared: 0.452
                                                           PRESS R-squared: 0.325
Null hypothesis of all 0 population slope coefficients:
F-statistic: 6.780 df: 2 and 12 p-value: 0.0
                                                 p-value: 0.011
-- Analysis of Variance
              df
                          Sum Sq
                                           Mean Sq
                                                     F-value
                                                                  p-value
```

Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2024

PUBS	1	301137778.671	301137778.671	8.832	0.012
TIME	1	161181041.670	161181041.670	4.727	0.050
Model Residuals SALARY	2 12 14	462318820.340 409159359.260 871478179.600	231159410.170 34096613.272 62248441.400	6.780	0.011

> #note that lessR_standardized coefficient options not working, > #so obtain manually--ignore SE and significance tests
> dszsalary = rescale(SALARY) > d\$zpubs = rescale(PUBS) > d\$ztime = rescale(TIME) > Regression(zsalary ~ zpubs + ztime,brief=TRUE) -- Estimated Model for zsalary Estimate Std Err t-value p-value Lower 95% Upper 95% 0.0002 -0.4162 (Intercept) 0.1911 0.001 0.999 0.2135 0.2623 0.814 0.432 -0.3581 zpubs 0.050 -0.00142.174 ztime 0.5701 0.2623

Base R

#multiple regression using base R function lm > > mod = lm(SALARY ~ PUBS + TIME, data=d) > summary(mod) Output omitted > library(lm.beta)
> modcoef <- lm.beta(mod)</pre> coef(modcoef,standardized=TRUE) (Intercept) PUBS TTMF 0.5702261 0.2133919 NA

Example Write-up

To examine whether the number of publications was independently associated with annual academic salary after controlling for the number of years since receiving the doctorate, a simultaneous multiple regression analysis was conducted. Results indicated that the number of publications did not independently predict salary, B = 121.80, $SE_B = 149.70$, 95% CI [-204.36,447.97], $\beta = .21$, p = .43. Years since receiving a doctorate was marginally significantly related to salary, B = 982.87, $SE_B = 452.06$, 95% CI [-2.08, 1967.81], $\beta = .57$, p = .57.05, indicating that salary increased by approximately \$982 for each additional year since receiving the doctorate. Overall, the number of publications and years since finishing a doctorate accounted for over 50% of the variance in salary, $R^2 = .53$, F(2,12) = 6.78, p = .01.

0.4166

0.7851

1.1416

Note: Current APA format is to use b for unstandardized and b^* for standardized. B and β are still widely used, however, even in APA journals.