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Principal Components Analysis 
 
Principal components analysis (PCA) was originally a data reduction strategy to obtain a smaller set of 
meaningful "components" from a set of related variables. Formulated by Harold Hotelling (1933) in part to 
solve the problem of multiple indicators of educational ability (e.g., reading speed, arithmetic speed) to 
discover a single general construct (known as "general ability" or g).1 Principal components may be used 
as a data reduction tool to explore the dimensionality of a set of items in a scale, and it is the initial step 
in exploratory factor analysis. PCA also underlies the weighted composite process of many classic 
multivariate methods, including MANOVA, discriminant analysis, cluster analysis, and canonical 
correlation (Jolliffe, 2002; Takemura, 1985). 
 
Let's consider a hypothetical example with a correlation matrix of a set of measures of elementary school 
abilities. 
 

 Reading 
Comprehension 

Reading Fluency Vocabulary Math Conceptual 
Understanding 

Math Procedural 
Knowledge 

Math Problem 
Solving 

Reading 
Comprehension 

1      

Reading Fluency .54 1     
Vocabulary .44 .80 1    
Math Conceptual 
Understanding 

.04 .21 .18 1   

Math Procedural 
Knowledge 

.17 .13 .09 .49 1  

Math Problem 
Solving 

.09 .10 .11 .72 .68 1 

 
Notice the clusters of high correlations among the reading-related measures and high correlations 
among the math-related measures. This pattern suggests there may be two meaningful components of 
ability underlying the correlations. Principal components uses an algebraic process to identify these 
potentially meaningful clusters of correlations. 
 
Eigenvalues 
To quantify the degree to which a correlation matrix of a set of variables can be represented by one or 
more clusters of highly correlated variables, PCA derives eigenvalues that represent the amount of 
variance accounted for by each component. There are as many eigenvalues as variables, and each 
represents the variance of each component. If there are a few major constructs underlying the set of 
correlations (e.g., reading and math ability), there will be a few large eigenvalues and several small 
eigenvalues. In the abilities example above, we should expect two large eigenvalues and four very small 
eigenvalues (a total of six, because there are six variables). The eigenvalues are in the metric of the 
variance/covariance values of the variables involved and sum to the total of the variances of the 
variables analyzed, so the values do not have a very meaningful interpretation by themselves. We 
interpret them in terms of their size relative to the other eigenvalues. The proportion of variance 
accounted for by each component can be obtained, however, by dividing the eigenvalue by the total 
variance (i.e., the sum of the eigenvalues).  
 
Mathematically, eigenvalues are derived by a decomposition of the variance-covariance matrix by solving 
a set of simultaneous equations. The matrix equation, called the characteristic equation, is solved to 
obtain the eigenvalues, so eigenvalues are sometimes referred to as characteristic roots.  
 

( ) 0=− vS λI   
 

 
1 Karl Pearson proposed the general mathematical concepts now associated with eigenvalues (characteristics roots derived from associations 
among a set of variables). Hotelling applied the concepts to educational measurement in correspondence with Thurstone, Spearman, Thorndike 
and others who developed factor analysis (Tatsuoka, 1988). 
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S is the variance-covariance matrix, λ contains the unknown eigenvalues, Ι is a special matrix of 1s and 
0s, called an identify matrix, and v is the eigenvector (which are weighting values). The eigenvalues are 
first found by setting the quantity in parentheses equal to 0, and then those values are used to solve for 
the eigenvectors. In a very simple case, say with two variables, the two eigenvalues are computed from 
solving the quadratic equation below, which is the regular algebraic equivalent to the matrix expression in 
parentheses above, where ( ) 0=−S λI . If the known values (elements) of this simple 2 × 2 variance-
covariance matrix were labeled a, b, c, and d, 2 the matrix equation could be solved for values of the 
unknown λ (see Tatsuoka, 1988, pp. 135-137): 
 

( )2 0ad bca dλ λ− + − =+   
 
The values a, b, c, and d, are known, so are replaced by constant values. Assuming some standard 
conditions, quadratic equations can be solved to obtain two valid solutions—the two desired eigenvalues, 
λ1 and λ2. In general, we will have a polynomial of the order equal to the number of variables and that 
number of solutions to the polynomial equation. In other words, we will have the same number of 
eigenvalues as variables. 
 
Principal Components and Factor Analysis 
Although PCA is the typical first step when conducting an exploratory factor analysis (EFA) as well as the 
default method whenever factor analysis is requested from a statistical software program, it is not really a 
true factor analysis method. The loadings from PCA, which describe the strength of the relationship 
between the item and the component, are linear weights that account for the full variance of the 
variables. Another way to state this is that PCA assumes no measurement error in the relationship 
between the component and the items. This is the primary difference from factor analysis which assumes 
that the factors account for only some of the variance in the items and that there is some remaining error 
variance left over. Graphically we can represent the difference with the following graphic:3 
 
PCA EFA 

 

 
The circles represent "components” for PCA or "factors" for EFA (many authors like to maintain this 
distinction, although in practice, the term "factor" is used for PCA too), and the arrows represent 
regression estimates of the path between the component or factor and the item, referred to as loadings. 
The EFA model is more in line with classical test theory ideas that any observed variable is a function of 
a true score and error (X = T + E), so for investigating the structure of a construct and estimating the 
loadings, many researchers (including myself) prefer one of the "true" factor analytic methods to PCA. 
Although PCA and EFA may show similar results in many samples, PCA can give poor estimates of 
loadings in small samples (Snook & Gorsuch, 1989; see Preacher & MacCallum, 2003 for an illustrative 
comparison). EFA is really a family of different estimation methods, all with the same general goals, 

 
2 Here a, b, c, and d are used to label the variance-covariance matrix values in the fairly standard system that we have used before for labeling 2 

× 2 tables, where 
a b
c d

 
=  

 
S  . The positive diagonal values (a and d) are the variances for the two variables and the negative diagonal (c and b) 

are the covariances. 
3 I have omitted a double headed arrow between the components and factors, which would represent the correlation between them. PCA derives 
weights based on the assumption that the components are independent, or orthogonal. Whether the factors are correlated is another issue that 
we will have to deal with in another course, although, in short, it is an unlikely assumption in most settings.  
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decision steps, and format of the results. Confirmatory factor analysis (CFA) generally has similar goals 
in that it is concerned with understanding the factors structure of the items and estimating the loadings, 
but it involves a different process. The basic assumptions about error variance for EFA are parallel to 
those of CFA, however, so these two methods are more related to one another than either is to PCA. For 
more information and references on factor analysis see the handout "A Quick Primer on Exploratory 
Factor Analysis" for my structural equation modeling course, http://web.pdx.edu/~newsomj/semclass/.  
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