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Model Building Procedures 
Researcher Determines Model 

Simultaneous and hierarchical model testing approaches are clearly the most common procedures 
used in psychology and the social sciences. In both methods, the predictors (covariates) are chosen by 
the researcher based on theory and prior research rather than chosen by some empirical means, such 
as after examining the strength of their correlations with the outcome. The distinction parallels the 
distinction we have used in other contexts—theoretically driven a priori and empirically driven post hoc.  

Simultaneous. All predictor variables are entered at the same time. I typically use this approach and it 
is, by far, the most commonly used approach among researchers.  

Hierarchical. Based on an a priori criteria, the researcher enters some number of variables into the 
model a step at a time. Any number of variables can be entered on each step, and any number of steps 
can be used. Each step is a separate regression model. The resulting model is identical to a model in 
which all variables were entered simultaneously. The major advantage of this approach is that a change 
in R-squared is computed, allowing for a test of whether a significant amount of additional variance is 
accounted for by the variable or variables entered on each step. If a single variable is entered on a step, 
the R-squared is equal to the semi-partial (a.k.a. “part”) correlation coefficient, and the test of the R-
squared change is equivalent to the test of the regression coefficient for the new variable.  

 
Data Determine Model 

Forward selection. Predictor variables are added to the model a step at a time. The first step 
evaluates all of the variables, and the variable with the largest correlation with the dependent variable is 
entered first. Then on each new step, the variable which will increase R-squared the most will be entered 
on that step (other criteria for particular significance levels—termed “PIN” for the p-value needed to be 
entered—or F values can be used). This approach is rarely used anymore.  

Backward selection. Backward selection proceeds in the opposite manner to forward selection. All 
variables are entered and then the poorest predictor is eliminated. The process continues until all of the 
nonsignificant variables are removed. Usually by default variables that are not significant are removed on 
each step (“POUT” of .05), but any p-value or F-value can be used for the criteria. The model is 
reevaluated after each variable is removed. This approach is rarely used anymore. 

Stepwise selection. Stepwise, which uses a combination of forward and backward selection, is more 
commonly used than either forward or backward. Predictor variables are entered as they are in forward 
selection, but at each step the variables are evaluated to see if any can be removed. As with the others, 
the criteria can be changed to a particular PIN and POUT or FIN and FOUT values.  

All subsets and best subsets regression. All subsets regression (and closely related "best subsets 
regression" in SPSS) picks the best combination of predictors by running regression analyses for all 
possible predictors (according to the list provided). That is, if five predictors are given, there will be one 
5-predictor model, five 4-predictor models and so on (25 = 32 models). One difficulty is deciding the 
optimal criteria to use in choosing the “best” model.  Researchers may use a variety of criteria for picking 
the best possible model, including the highest R-squared, the lowest MSE (mean-squared residual or 
MSresidual), Akaike's Information Criterion (AIC; Akaike, 1973; or AICC, which is corrected for small 
samples; Hurvich & Tsai, 1995), Bayesian Information Criterion (BIC; Schwarz, 1978) or the lowest 
Mallows' Cp (Mallows, 1973). Cp is based on MSE but takes the number of predictors into account 
(models with more predictors always have higher R-squared values regardless of how useful the 
variables really are). In other contexts, you may see these indices are stated in terms of the likelihood 
function. Below are some of the formulas stated in terms of sum of squares residual (error), the standard 
error of the estimate, ˆY Y
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The all subsets procedure is available in SAS with PROC REG and the best subsets procedure is 
available in SPSS under the LINEAR procedure. In R, you can use the leaps package or 
regsubsets() base function with the method=c("exhaustive")  

Decision tree regression. Another highly popular data science or machine learning method is 
decision tree regression (“decision tree models” or sometimes just “decision trees”). There are a variety 
of specific decision tree approaches and algorithms, such as ID3 (iterative dichotomiser 3; Quinlan, 
1986) is just for categorical data, C4.5 is an extension of the ID3 for continuous variables (Quinlan, 
1993), and CART (classification and regression trees; Breiman et al., 1984). In essence, all are a kind of 
model selection method in which the most important predictor is selected out first (root node) and then 
additional predictors are selected in a branching fashion based on reduction of unaccounted for variance. 
There are too many concepts and terms, such as splits, edges, nodes, leafs, and Gini factors to cover 
here (see by Pathak et al., 2018 and James et al., 2023 for introductions), but the general approach fits 
into a purely exploratory framework that attempts to find the most important predictors for highly complex 
data sets or in the absence of a priori hypotheses. See Rachel Cabrera’s review of R packages, 
https://rpubs.com/rachelcabrera/855412 and Simon Moss’s introduction for SPSS 
https://www.cdu.edu.au/files/2020-07/Introduction%20to%20decision%20trees.docx. 

Bagging, boosting, and random forests. Bagging and boosting are specific model selection 
algorithmic features used along with decision-tree modeling and commonly used in a few areas such as 
neural networks (see Sutton, 2005 for a review). Bagging or bootstrap aggregating (Breiman, 1996) is a 
resampling method based on subsets of cases in the data set. Multiple samples are combined to reduce 
error in prediction, but each sample is combined with equal weight to decide on inclusion of variables in 
the model (i.e., "voting"). Boosting (Freund & Schapire, 1996) also combines results from many 
analyses, but cases are weighted based on how well they are predicted and analyses are recomputed in 
an iterative process. Bagging and boosting are primarily used in engineering and computer science and 
relatively rarely used in the social sciences. Some evidence suggests that they can improve prediction, 
with some papers suggesting boosting outperforms bagging (Quinlan, 2006). Random forests (Ho, 1998) 
improves upon bagging using a random process of selection from a full set of predictors at each 
branching.  

Relative weight analysis. Although not generally used as a model selection strategy per se, relative 
weight analysis (and several closely related approaches, such as dominance analysis and commonality 
coefficients) attempt to identify the relative importance of predictors in the model. Usually these 
approaches are not used for eliminating unimportant predictors or adding important predictors, but they 
are intended to find the most valuable predictors of some phenomenon. This is an admirable goal, as 
researchers need to move beyond just significance tests, but the several approaches that have been 
proposed all have some pitfalls and can often involve complicated computations (see Nimon & Oswald, 
2013 for approaches in R, and see Tonidandel & LeBreton, 2011 for links to several macros). At the 
heart of most relative weight type measures are standardized coefficients or squared multiple 
correlations (for an introduction, see Tonidandel & LeBreton, 2011). The relative weight methods try to 
improve upon squared standardized coefficients, which are subject to inaccuracies in the ability to sum to 
the total R-squared value whenever the predictors are correlated, as measures of proportion of variance 
accounted for uniquely by a predictor. Often the various approaches arrive at similar results and are 
correlated with one another (Johnson, 2000). I am not certain how much they add beyond an increment 
in R-squared (or semi-partial correlation) coefficient and it must be kept in mind that R-square change 
and any of these measures are subject to sampling variability, sometimes with very wide intervals. This 
makes replication critical to determine real relative importance.  

 
Comments 

Hierarchical regression can be useful for estimating the variance accounted for by sets of variables. 
But one reason I usually use simultaneous regression rather than hierarchical regression is that all 
coefficients are partial with respect to all other variables considered. Researchers who use hierarchical 
regression might enter demographic variables on the first step as “control variables” or “covariates.” 
There are no substantial differences in the two approaches, however. Hierarchical regression is simply 
running several different regression models at the same time, each one with added predictors. The one 
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difficulty I have with hierarchical regression merely involves the usual format of presentation. Because 
researchers often present results for only the new variables entered on a particular step, readers cannot 
tell what happens to variables entered on prior steps after new variables have been entered. For 
example, if age becomes nonsignficant after another variable is entered on the second step, the reader 
will conclude that age was an important predictor even though a variable entered later was responsible 
for the association of age with the dependent variable. Your textbook (Cohen et al., 2003, Chapter 5, 
Section 5.3) makes a case for the order of entry with hierarchical regression based on causal ordering of 
variables. In general, I think hierarchical regression provides little advantage in understanding causal 
ordering and that causality should be explored in other ways (more detail when I discuss longitudinal 
analysis and mediation). 

Forward and backward procedures are rarely used anymore, because stepwise selection is 
considered superior to either. Although stepwise selection is better than forward or backward alone, it still 
has problems. Simulation studies suggest that stepwise selection often leads to erroneous model 
choices (both Type 1 and Type 2 errors can occur; Freedman, 1983; Pope & Webster, 1972). I 
recommend that researchers use theory to decide which predictors to include and which order to enter 
variables into the model, rather than use exploratory, data-driven approaches. If a researcher wishes to 
go completely exploratory, the all subsets, boosting, and random forest decision trees may be preferred 
over the other exploratory approaches. 
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