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A Quick Primer on Exploratory Factor Analysis  
 
Exploratory vs. Confirmatory Factor Analysis 
Similarities 
 Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are two statistical 

approaches used to examine the internal reliability of a measure. 
 Both are used to investigate the theoretical constructs, or factors, that might be represented by a set 

of items (i.e., the factor structure). 
 Either can assume multiple factors are uncorrelated (orthogonal) or correlated. 
 Both are used to assess the quality of individual items. 
 Both can be used for exploratory or confirmatory purposes. 

 
Differences 
 
 With EFA, researchers usually decide on the number of factors by examining output from a principal 

components analysis (i.e., eigenvalues are used). With CFA, researchers must specify the number 
of factors a priori. 

 CFA requires that a particular factor structure be specified, in which the researcher indicates which 
items load on which factor. EFA allows all items to load on all factors. 

 CFA provides a fit of the hypothesized factor structure to the observed data. 
 Researchers typically use maximum likelihood to estimate factor loadings with CFA, whereas 

maximum likelihood is only one of a variety of estimators used with EFA. 
 CFA allows researchers to specify correlated measurement residuals, constrain loadings or factor 

correlations to be equal to one another, perform statistical comparisons of alternative models, test 
second-order factor models, and statistically compare the factor structure of two or more groups. 

 
Exploratory Factor Analysis: Purpose 
Exploratory factor analysis (EFA) is generally used to discover the factor structure of a measure, examine 
its internal reliability, and eliminate items. EFA is often recommended when researchers have no 
hypotheses about the nature of the underlying factor structure of their measure. Exploratory factor analysis 
has three basic decision points: (1) decide the number of factors, (2) choosing an extraction method, (3) 
choosing a rotation method.  

 
Exploratory Factor Analysis: Deciding the number of factors 
The most common approach to deciding the number of factors is to generate a scree plot, which plots 
values that are analogous to the proportion of variance accounted for in all of the items by each of the 
factors estimated in a principal components analysis (PCA). PCA is a method of forming a set of weighted 
composites out of a larger number of variables (often items from a scale). It is a method of data reduction, 
but not considered a "true" factor analysis, because the item variances are assumed to be fully accounted 
for by the factors (i.e., no measurement error). PCA is nearly universally used as the first step in an 
exploratory factor analysis to decide upon the number of factors to extract. The scree plot is a two-
dimensional graph with factors on the x-axis and eigenvalues on the y-axis. Eigenvalues are produced by 
the analysis and represent the variance accounted for by each underlying component (often "factor" 
informally). Eigenvalues are not represented by percentages; they are raw scores that total to the number of 
items when you start with a correlation matrix (but the sum of item variances if the covariance matrix is 
used). A 12-item scale will theoretically have 12 possible underlying factors (with a sum of eigenvalues 
equal to 12 in the correlation matrix case), and each factor will have an eigenvalue that indicates the 
amount of variation in the items accounted for by each factor. If the first factor has an eigenvalue of 3.0, it 
accounts for 25% of the variance (3/12=.25). The total of all the eigenvalues will be 12 if there are 12 items, 
so some factors will have smaller eigenvalues. Eigenvalues are typically arranged in a scree plot in 
descending order like the following: 
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Example of a scree plot: 
 
 
 
 
 
 
 
 
 
From the scree plot you can see that the first couple of factors account for most of the variance, then the 
remaining factors all have small eigenvalues. The term “scree” is taken from the word for the rubble at the 
bottom of a mountain (Cattell, 1966). A researcher might examine this plot and decide there are two 
underlying factors and the remainder of the factors are just “scree” or error variation. So, this approach to 
selecting the number of factors involves a certain amount of subjective judgment. A number of studies 
suggest the scree plot method does pretty well in identifying the correct number of factors (e.g., Hakstian, 
Rogers, & Cattell, 1982; Tucker, Koopman, & Linn, 1969; but see review by Goretzko et al., 2021), 
however. 
 
A widely recognized criterion is called the Kaiser-Guttman rule (Kaiser, 1960) and simply states that the 
number of factors is equal to the number of factors with eigenvalues greater than 1.0. Importantly, this 
criterion is not consistent across all applications and can lead to over or under extraction of factors (e.g., 
Cattell & Vogelmann, 1977; Gorsuch, 1983; Zwick & Velicer, 1982; see Preacher & MacCallum, 2003, for 
additional references). Kaiser-Guttman approach is the most commonly used (Goretzko et al., 2019; 
Henson & Roberts, 2006), yet the simple scree test is likely better (Velicer, 1976; Velicer et al., 2000). 
Because of its subjectivity, other more empirical approaches to scree plots have been proposed that use 
more quantifiable values to find the bend in the plot, including Cattell-Nelson-Gorsuch modified scree test 
(Gorsuch, 1966; Gorsuch, 1983) and the Zoski-Jurs regression index (1996). 
 
Another widely discussed approach to identifying the number of actors is Horn's (1965) parallel analysis 
which compares the eigenvalues from the EFA to the eigenvalues obtained from analyzing multiple data 
sets consisting of random variables, allowing estimation of percentiles for the eigenvalues relative to what is 
expected by chance (see Dinno, 2009 for a clear explanation of the parallel analysis rationale and method). 
Although the parallel analysis approach appears to do well at identifying the correct number of factors (e.g., 
Auerswald & Moshagen, 2019; Fabrigar & Wegener, 2002), it is not as widely available in software 
packages.  
 
Perhaps the most accurate approach will be one that uses a combination of strategies. Auerswald and 
Moshagen (2019) recommend sequential chi-square tests (Lawley & Maxwell, 1962) together with either the 
Hull method (Lorenzo-Seva et al., 2011), the Empirical Kaiser Criterion (Braeken & van Assen, 2017), or 
Horn’s parallel analysis. 
  
Exploratory Factor Analysis: Factor Extraction 
Once the number of factors is decided, the researcher runs another factor analysis to get the loadings for 
each of the factors. To do this, one has to decide which mathematical solution to use to find the loadings. 
There are about five basic extraction methods (1) PCA, which is the default in most packages. PCA 
assumes there is no measurement error and is considered not to be a true exploratory factor analysis; (2) 
maximum likelihood (a.k.a. canonical factoring); (3) alpha factoring, (4) image factoring, (5) principal axis 
factoring with iterated communalities (a.k.a. least squares), sometimes referred to as "principal factors". 
 
Without getting into the details of each of these, I think the best evidence supports the use of principal axis 
factoring and maximum likelihood approaches. I typically use the former. Gorsuch (1989) recommends 
maximum likelihood if only a few iterations are performed (not usually possible in most packages). Snook 
and Gorsuch (1989) show that PCA can give poor estimates of the population loadings in small samples. 
With larger samples, most approaches will have similar results.  

 
Factors

Eigenvalues
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The extraction method will produce factor loadings for every item on every extracted factor.  Researchers 
hope their results will show what is called simple structure, with most items having a large loading on one 
factor but small loadings on other factors. The measure is usually modified (i.e., items are eliminated) to 
achieve simple structure. 
 
Exploratory Factor Analysis: Rotation  
Once an initial solution is obtained, the loadings are rotated. Rotation is a way of maximizing high loadings 
and minimizing low loadings so that the simplest possible structure is achieved. There are two basic types 
of rotation: orthogonal and oblique. Orthogonal rotation implies that the factors are assumed to be 
uncorrelated with one another. This is the default setting in all statistical packages but is rarely a logical 
assumption about factors in the social sciences. Not all researchers using EFA seem to be aware of which 
rotations methods are orthogonal and oblique or the assumptions that orthogonal rotations imply an 
assumption of uncorrelated factors (completely unrelated constructs). Oblique rotation derives factor 
loadings based on the assumption that the factors are correlated, and it is probably reasonable to assume 
factors are correlated for most measures. Even if factors are uncorrelated empirically, there should be no 
harm in choosing an oblique rotation—the factors will just be shown to be uncorrelated in the output. Some 
common orthogonal rotations are: varimax, quartamax, equamax. Some common oblique rotations are: 
oblimin, promax, direct quartimin 
 
I am not an expert on the advantages and disadvantages of each of these rotation algorithms, and they 
reportedly produce fairly similar results under most circumstances (although orthogonal and oblique 
rotations will be rather different from one another). I tend to use promax rotation because it is known to be 
relatively efficient at achieving simple oblique structure. 
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