Curvilinear Regression Example Canadian NPHS Check-up Recency Regressed on Weight

SPSS

Plot

graph

/scatterplot(bivar)=checkup with weight.

The chart editor let's you select some different markers, like these bubbles, which are larger with higher frequency.

Syntax

output close *.

get file='c:\jason\spsswin\da2\hbs_2.sav'. * Random sample of approx 1200 older adults from the Canadian NPHS.

*make sure n the mean is based on is the same used in the regression model. count nmiss=checkup weight (missing). select if nmiss=0.

```
*mean center the weight variable.
aggregate /mweight=MEAN(weight).
compute cweight=weight - mweight.
```

```
*compute quadratic effect variable.
compute cweight2=cweight*cweight.
```

```
regression vars=checkup cweight cweight2
   /descriptives=mean stdev n sig corr
   /statistics=anova r coeff ses cha
   /dependent=checkup
   /method=enter cweight cweight2
   /scatterplot (*zresid *zpred).
```

Output Regression

Descriptive Statistics

	Mean	Std. Deviation	N□
checkup Physical Check- up	2.28□	2.027□	1191□
cweight□	.00000 🗆	4.114211□	1191□
cweight2 □	16.91252 🗆	29.174028□	1191□

Newsom Psy 522/622 Multiple Regression & Multivariate Quantitative Methods, Winter 2024

Correlations

		CHECKUP Physical		
		Check-up	CWEIGHT	CWEIGHT2
Pearson Correlation	CHECKUP Physical Check-up	1.000	.000	.027
	CWEIGHT	.000	1.000	.361
	CWEIGHT2	.027	.361	1.000
Sig. (1-tailed)	CHECKUP Physical Check-up		.496	.179
	CWEIGHT	.496		.000
	CWEIGHT2	.179	.000	
Ν	CHECKUP Physical Check-up	1191	1191	1191
	CWEIGHT	1191	1191	1191
	CWEIGHT2	1191	1191	1191

Model Summary

						_	Change Stati	stics	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.028 ^a	.001	001	2.028	.001	.481	2	1188	.618
2. Destinations (Constant) OM/EICUIT2 OM/EICUIT									

Predictors: (Constant), CWEIGHT2, CWEIGHT

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3.959	2	1.979	.481	.618 ^a
	Residual	4886.375	1188	4.113		
	Total	4890.334	1190			

a. Predictors: (Constant), CWEIGHT2, CWEIGHT

b. Dependent Variable: CHECKUP Physical Check-up

Coefficients^a

		Unstand Coeffi	lardized cients	Standardized Coefficients			
Model		В	Std. Error	Beta	Std. Error	t	Sig.
1	(Constant)	2.245	.069			32.436	.000
	CWEIGHT	005	.015	011	.031	344	.731
	CWEIGHT2	.002	.002	.031	.031	.981	.327

a. Dependent Variable: CHECKUP Physical Check-up

Scatterplot

Dependent Variable: Physical Check-up

Newsom Psy 522/622 Multiple Regression & Multivariate Quantitative Methods, Winter 2024

R (some output omitted for brevity)

>#clear active frame from previous analyses >rm(d)

>library(haven)

>d = read_sav("c:/jason/spsswin/da2/hbs_2.sav") > #Random sample of approx 1200 older adults from the Canadian NPHS.

- > #need to convert data types in order to compute a correlation in R-base R function
 > d\$CHECKUP = as.numeric(d\$CHECKUP)
- library(car) >
- simple regression first and examine residual plot #test
- residualPlots(lm(CHECKUP ~ WEIGHT, data = d), fitted=FALSE) >

Initial Plot of the Residuals from Linear Regression

Newsom Psy 522/622 Multiple Regression & Multivariate Quantitative Methods, Winter 2024 Adjusted R-squared: -0.001 R-squared: 0.001 PRESS R-squared: -0.005 Null hypothesis of all 0 population slope coefficients: F-statistic: 0.481 df: 2 and 1188 p-value: 0.618 -- Analysis of Variance ٩£ Sum Sa Moon Sa E-Value n_v_1_

	ui	Sum Sq	Mean Sq	F-value	p-value
cweight	1	0.000	0.000	0.000	0.991
cweight2	1	3.958	3.958	0.962	0.327
Model	2	3.959	1.979	0.481	0.618
Residuals	1188	4886.375	4.113		
CHECKUP	1190	4890.334	4.110		

Residual Plot for Model with Quadratic Effect

From the lessR regression output. You could also use the residualPlots function above but with guadratic effect added to the model.

(flat fit line, but, ooh, I don't like those outliers much!) 4 10 000 0 000 0000 0 Residuals Ю **00000**000 0 0 \sim 00 000 0 0 ന്നെ നോന്ന് പ്രവാനം പ 0 0 COD. 00 0 0 000 0 0 7 0 0000 000 000 000 Ņ 2.3 2.4 2.5 2.6 2.7 2.8 **Fitted Values** Largest Cook's Distance, 0.14, is highlight

#get standardized solution (lm.beta package/function also works for this)
#standardized coefficients--ignore significance tests
d\$zweight = scale(d\$WEIGHT)

- >
- >
- d\$zcheckup = scale(d\$CHECKUP)
 d\$zweight2 = d\$zweight^2 >
- >

> Regression(zcheckup ~ zweight + zweight2, brief=TRUE)

BASIC ANALYSIS

-- Estimated Model for zcheckup

	Estimate	Std Err	t-value	p-value	Lower 95%	Upper 95%
(Intercept)	-0.01768303	0.03413621	-0.518	0.605	-0.08465701	0.04929095
zweight	-0.01068976	0.03109388	-0.344	0.731	-0.07169480	0.05031527
zweight2	0.01769789	0.01804062	0.981	0.327	-0.01769715	0.05309292

Example Write-up

A regression model was used to test whether BMI had a quadratic relationship to medical check-up frequency. The BMI variable was first centered before computing the guadratic term to reduce nonessential multicollinearity (Cohen et al., 2003), and both the linear and quadratic terms were included in the model together. Results indicated that neither the linear effect nor the quadratic effect were significant, B = -.01, SE = .02, p = .73, 95%CI[-.04,.02] and B = .00, SE = .00, p = .33, 95%CI[-.00,.01], respectively. The total variance accounted for in check-up frequency was only approximately .1%, R² = .001, which was not significant, F(2,1188) = .481,p = .618.