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Model Building Strategies in Multilevel Regression 

As with ordinary least squares multiple regression and logistic regression, the vast majority of models in 
psychology and the social sciences are developed based on theoretical considerations (a priori).  There are 
usually one or more predictors that are of primary theoretical interest and any number of covariates that the 
researcher wishes to control for in the analysis. Exploratory model building strategies, in which a “best” 
model is chosen from a large list of possible predictors also are possible, but less commonly used.  
 
A priori model building 
Generally, researchers have a set of a prior notions about which predictors will be of interest and most 
important in predicting an outcome. Nearly always, they will also be interested in partialing out the effects of 
potential confounders of that relationship. Multilevel models are typically not limited by the number of 
predictors (level-1 or level-2) included in the model, so there are few limits on the number of fixed effects 
that can be estimated. But researchers quite often will find that they cannot estimate all of the random 
effects that they would like to estimate because models become too complex. For instance, a model with 
just 4 random slopes will have 15 random effects.1 More random effects can be estimated when the group 
sizes (nj) or time points is larger, when there are more clusters (groups or individuals in the longitudinal 
case; Buyse, Molenberghs, Burzykowski, Renard, & Geys, 2000; Renard, Geys, Molenberghs, 
Burzykowski, & Buyse, 2002), and when the cluster sizes are balanced (Van der Elst, Hermans, Verbeke, 
Kenward, Nassiri, & Molenberghs, 2016). For designs with small groups (e.g., couples, families) or with 
many longitudinal designs, there will be a theoretical limit to the number of random slopes, and in other 
cases it will be difficult in practice to estimate too many random slopes. For example, Diallo and colleagues 
(Diallo, Morin & Parker, 2014) show that models that included random slopes for the quadratic effect had a 
high rate of nonconvergence. The slope reliability can be a useful diagnosis tool. Slopes with very low 
reliability (perhaps .1 or .2) will frequently be associated with difficulty in estimating random slopes.  
 
Too many random effects will result in convergence failures (no optimal solution is found even with a large 
number of iterations allowed) or sometimes error messages indicating difficulties estimating random effect 
variances or standard errors. When the solution contains a negative variance, an error message may refer 
to a “boundary” condition, meaning that the estimate exceeds the allowable values for a variance. In other 
instances, the output may not print any errors but instead will include one or more estimates or a confidence 
limit for the random slope that is equal to zero. In other instances, standard errors or significance tests may 
not be printed. For any of these types of results, researchers should not trust the output. Eliminating the 
random slope from the model for the problematic variable will usually fix the problem, but likely will have 
some cost in the accuracy of the model.2   
 
Two general strategies can be distinguished (Hox, Moerbeek, & Van de Schoot, 2018). Starting with a 
model with all of the desired fixed and random coefficients and then removing non-significant effects (e.g., 
West, Welch, & Galecki, 2022) can be called a “top-down approach,” whereas starting with and empty 
model and adding fixed and random effects in some order can be called a “bottom-up” approach. Hox and 
colleagues (expanding on similar recommendations by Byrk & Raudenbush, 2002) suggest first testing the 
empty model, then adding the fixed effects from level-1, then adding the level-2 predictors, then adding 
random slopes for each level-1 predictor, one at a time, and then finally including any cross-level predictors. 
In this latter approach, when a random effect is not significant, it is not included in the model. Including a 
random slope even though it is not truly varying, is less problematic, however, assuming the model runs 
without problems. When testing cross-level interactions, it also is recommended that the random slopes for 
the level-1 variable involved in the interactions always be estimated, even if the slopes do not vary 
significantly (Heisig & Schaeffer, 2019; LaHuis & Ferguson, 2009).3     

 
1 To count the random effects, we consider the intercept and the four random slopes, which is five variances. The number of unique covariances is 
equal to (5 × 4)/2 = 10. So, with the intercept and slope variances and all of the covariances, there are 15 random effects.  
2 It has also been my experience that centering can make an important difference in estimating a multilevel model (this has been demonstrated in 
the longitudinal case with quadratic effects tests; Diallo et al., 2014). There are more theoretical reasons to center predictors as a general strategy, 
as I have pointed out in other handouts, but there is likely a (not entirely unrelated) empirical reason for doing so as well.  
3 McNeish, Stapleton, & Silverman (2017) argue that not all nested data circumstances require multilevel models and random effects. General 
estimating equations (GEE) or complex sampling design adjustments for clustering can address the bias in standard errors. The simulations that 
suggest biased standard errors for fixed effects tests when omitting random slopes (e.g., LaHuis et al., 2020) seem to contradict this 
recommendation.  
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Snijders and Bosker (2012; see Section 6.4) note simply that random intercepts suggest predictors are 
needed to account for between-cluster variation and that random slopes suggest predictors are needed to 
account for random variance. These notions often drive researchers to include additional predictors in an 
attempt to account for between-cluster variation. One can conceivably argue that when there is no 
significant variance remaining in the intercept that the model requires no additional predictors (Hoffman & 
Walters, 2022).   
 
In practice, it is almost always the case that the multilevel model that can be tested in practice is not the 
model the researcher ideally would like to test. So, one must be prepared for some level of compromise. 
And comprise it is, because, assuming the slope truly varies, not estimating random slopes for a variable 
can bias the standard errors of the fixed effect for that variable, leading to increase type I error (LaHuis, 
Jenkins, Hartman, Hakoyama, & Clark, 2020). This is all the more reason for study planning for sufficient 
samples sizes within and between clusters. 
  
Exploratory model building 
I have focused primarily on more a priori-based modeling approach, partly because this seems to be heavily 
favored within psychology (as at least evidenced by the fairly rare instances of exploratory model building 
approaches in published articles) and partly because software for exploratory model building approaches is 
not very widely available and the relative performance of the multitude of approaches have not been very 
thoroughly compared in the multilevel modeling context.  
 
Methods of choosing the “best” model based on the variance accounted for can be a challenge to 
implement, because fit or accounted for variance in multilevel models is not as simply defined as it is with 
single-level regression models (Wang & Gelman, 2014). There are, however, a number of proposed 
approaches to extend exploratory model selection used with single-level regression to multilevel models, 
such as random forests (Shi et al., 2019), decision trees (e.g., Fokkema et al., 2021; Speiser et al., 2020) 
and boosting model selection (e.g., Griesbach et al., 2021; Sigrist, 2022).  
 
References 
Bryk, A. S., & Raudenbush, S. W. (2002). Hierarchical linear models: applications and data analysis methods, second edition. Sage. 
Buyse M, Molenberghs G, Burzykowski T, Renard D, & Geys H. (2000). The validation of surrogate 
endpoints in meta-analyses of randomized experiments. Biostatistics,1,49–67. 
Diallo, T. M., Morin, A. J., & Parker, P. D. (2014). Statistical power of latent growth curve models to detect quadratic growth. Behavior research 

methods, 46, 357-371. 
Fokkema, M., Edbrooke-Childs, J., & Wolpert, M. (2021). Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method for 

multilevel and longitudinal data. Psychotherapy Research, 31(3), 329-341. 
Griesbach, C., Säfken, B., & Waldmann, E. (2021). Gradient boosting for linear mixed models. The International Journal of Biostatistics, 17(2), 317-

329. 
Heisig, J. P., & Schaeffer, M. (2019). Why you should always include a random slope for the lower-level variable involved in a cross-level interaction. 

European Sociological Review, 35(2), 258-279. 
Hoffman, L., & Walters, R. W. (2022). Catching up on multilevel modeling. Annual Review of Psychology, 73, 659-689. 
Hox, J., Moerbeek, M., & Van de Schoot, R. (2018). Multilevel analysis: Techniques and applications, third edition. Routledge. 
LaHuis, D. M., & Ferguson, M. W. (2009). The accuracy of statistical tests for variance components 
in multilevel random coefficient modeling. Organizational Research Methods, 12(3), 418-435. 
LaHuis, D. M., Jenkins, D. R., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2020). The effects of misspecifying the random part of multilevel 

models. Methodology, 16(3), 224-240. 
McNeish, D., & Bauer, D. J. (2022). Reducing incidence of nonpositive definite covariance matrices in mixed effect models. Multivariate Behavioral 

Research, 57(2-3), 318-340. 
Renard D, Geys H, Molenberghs G, Burzykowski T, Buyse M. (2002). Validation of surrogate endpoints in multiple randomized clinical trials with 

discrete outcomes. Biometrical Journal, 44, 921–935 
Shi, L., Westerhuis, J. A., Rosén, J., Landberg, R., & Brunius, C. (2019). Variable selection and validation in multivariate modelling. Bioinformatics, 

35(6), 972-980. 
Sigrist, F. (2022). Gaussian process boosting. Journal of Machine Learning Research, 23(232), 1-46. 
Snijders, T.A.B., & Bosker, R. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling, second edition. Sage. 
Speiser, J. L., Wolf, B. J., Chung, D., Karvellas, C. J., Koch, D. G., & Durkalski, V. L. (2020). BiMM tree: a decision tree method for modeling 

clustered and longitudinal binary outcomes. Communications in Statistics-Simulation and Computation, 49(4), 1004-1023. 
Van der Elst, W., Hermans, L., Verbeke, G., Kenward, M. G., Nassiri, V., & Molenberghs, G. (2016). Unbalanced cluster sizes and rates of 

convergence in mixed-effects models for clustered data. Journal of Statistical Computation and Simulation, 86(11), 2123-2139. 
Wang, W., & Gelman, A. (2015). Difficulty of selecting among multilevel models using predictive accuracy. Statistics and Its Interface 8 (2): 153–160. 
West, B. T., Welch, K. B., & Galecki, A. T. (2022). Linear mixed models: a practical guide using statistical software. Chapman and Hall/CRC. 


