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Multilevel Regression Estimation Methods for Continuous Dependent Variables 
 
General Concepts of Maximum Likelihood Estimation 
The most commonly used estimation methods for multilevel regression are maximum likelihood-based. 
Maximum likelihood estimation (ML) is a method developed by R.A.Fisher (1950) for finding the best 
estimate of a population parameter from sample data (see Eliason,1993, and Enders, Chapter 2, 2022, 
for accessible introductions). In statistical terms, the method maximizes the joint probability density 
function (pdf) with respect to some distribution. With independent observations, the joint probability of the 
distribution is a product function of the individual probabilities of events, so ML finds the likelihood of the 
collection of observations from the sample. In other words, it computes the estimate of the population 
parameter value that is the optimal fit to the observed data.   
 
ML has a number of preferred statistical properties, including asymptotic consistency (approaches the 
parameter value with increasing sample size), efficiency (lower variance than other estimators), and 
parameterization invariance (estimates do not change when measurements or parameters are 
transformed in allowable ways). Distributional assumptions are necessary, however, and there are 
potential biases in significance tests when using ML. ML can be seen as a more general method that 
encompasses ordinary least squares (OLS), where sample estimates of the population mean and 
regression parameters are equivalent for the two methods under regular conditions. ML is applied more 
broadly across statistical applications, including categorical data analysis, logistic regression, and 
structural equation modeling.  
 
Iterative Process 
For more complex problems, ML is an iterative process [for multilevel regression, usually Expectation-
Maximization (EM) or iterative generalized least squares (IGLS) is used] in which initial (or “starting”) 
values are used first. The computer then computes the likelihood function, which represents a lack of fit, 
for that set of parameter “guesses.”  On the next step, another set of parameter estimates are used and 
so on until there is a “response surface” that represents the likelihood values for all of the guesses. Each 
step is called an iteration. The idea is similar to the idea of ordinary least squares (OLS) in regression in 
which the squared errors or residuals are minimized to obtain the best fit of the regression line to the 
data and the regression coefficients. 

 
p.12. Agresti, A. Categorical data analysis, third edition. New York: Wiley. 

 
Tangent lines can be drawn (first derivative) for any particular point on the curve (as in the point L0 in the 
figure above), and when the slope of the tangent line equals 0 (second derivative), the maximum of the 
curve of possible estimates is found, and this point corresponds to the optimal sample estimate of the 
parameter. The computer stops when a certain selected criterion for closeness of fit has been reached 
(convergence) and values for the fit of the overall model and the parameter values are generated. More 
complex models, particularly those with more random slopes may take more iterations to converge.  
Software packages set a maximum number of iterations, which the user must often override. Generally, 
this is not a problem, but it is also not unusual for convergence to fail even when given a large number of 
iterations. In these instances, the researcher will need to make choices about the number of random 
effects estimated and possibly the number of predictors in the model. Missing data, dependent variable 
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distributions, and the number of random effects relative to group size may be additional factors in 
convergence difficulties. 
 
Restricted or Residual Maximum Likelihood (REML) 
The most common (and usually the default) estimation method for multilevel regression models is a 
variant of full maximum likelihood called either restricted or residual maximum likelihood (REML) by 
various authors.1 Full maximum likelihood is typically also available as an estimation option, but it 
produces variance (random) effects estimates that are biased (usually underestimated; Longford, 1993), 
with more substantial biases occurring with smaller samples (fewer groups). REML differs from full ML in 
a couple of ways (Raudenbush & Bryk, 2002, Chapter 3). First, REML takes into account a degrees of 
freedom correction (much like the difference between sample and population variance formulas) for the 
variance effects based on the number of fixed effects in the model. Secondly, whereas full ML alternates 
estimation of variances (random effects) and fixed effects, REML estimates them separately by first 
estimating the variances iteratively and then estimating the fixed effects coefficients (see McNeish, 2017, 
for a very clear discussion of the differences between ML and REML estimation).  
 
REML is more commonly used in multilevel regression because its sampling variance estimates are less 
biased with fewer groups (Browne, 1998). Although the two methods usually produce similar results, with 
closer correspondence as the number of groups increases (i.e., they are asymptotically equivalent), it is 
wisest to use REML as a default method because of its general better performance (Hox & McNeish, 
2020). With sufficient sample sizes, REML produces good estimates of fixed and random effects and 
their standard errors, but smaller samples and distributions can impact random effects estimates and 
significance tests (Maas & Hox, 2004; 2005; McNeish & Stapleton, 2016a). Although fixed effects 
estimates using ML and REML themselves are not impacted by nonnormal distributions, standard error 
estimation and significance tests for both the fixed and random effects may be sensitive to violations of 
normality assumptions.2   
 
Bayesian Estimation 
The Bayes statistical approach is usually considered to be a philosophical departure from maximum 
likelihood (or any other classic or “frequentist”) estimation approach. While maximum likelihood 
estimation can be thought of as an assessment of the probability of the observed data given a certain 
parameter value, Bayesian analysis can be thought of as assessing the probability of the parameter 
given the data. In the Bayesian approach, the parameters are thought of as random, uncertain values. 
Estimates are obtained by using a prior distribution, which is an initial assumed distribution that can be 
anything from a minimally useful distribution (e.g., normal distribution with very wide variance) to 
something very specific (e.g., normal distribution with specific mean and narrow variance), weighted by a 
likelihood function, to arrive at a posterior distribution. Depending on the type of priors used, the posterior 
distribution is more influenced or less influenced by the prior distribution. The process is implemented 
with an iterative algorithmic search called a Markov chain Monte Carlo process (or Gibbs sampler) that 
searchers for one parameter at a time, on each step sampling at random possible values from the prior 
distribution given the chosen constraints. At the end of the process, the probable values are chosen and 
uncertainty intervals are derived around them (called “credible” or “credibility” or “posterior probability” 
intervals). The interpretation of the intervals with Bayesian modeling is that there is a 95% probability that 
the true parameter falls within that range. The maximum likelihood (and other frequentist) intervals 
represent the probability that 95% of intervals constructed from all the other samples in the sampling 
distribution will contain the true population value. In many simple cases and in many practical 
applications, the Bayesian and the frequentist approaches will arrive at very similar values and the same 
conclusions. Bayesian estimation is a very popular idea in multilevel (and other) modeling but has not 
become that widely implemented by researchers in practice yet. Bayesian estimation can be useful in 

 
1 You may see maximum likelihood abbreviated as ML, MLE, FIML, or FML and you may see restricted (or residual) maximum likelihood 
abbreviated as REML or RML. 
2 See the subsequent "Diagnostics" and "Robust Standard Errors" handouts for more information. 
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circumstances when multilevel models have difficulty converging or are likely to have biased estimates. 
Small samples with multilevel models (few groups) is one area in which Bayesian estimation may be 
useful, although its performance compared with the restricted maximum likelihood approach (particularly 
with corrections, such as Kenward-Roger adjustments) is heavily dependent the use of correct and 
informative priors (McNeish, 2016). The choice of prior can sometimes lead to very different results or 
conclusions (Depaoli, 2014; Gelman, 2006; Lambert et al., 2005), so a potentially difficult challenge is 
finding good priors, requiring strong theoretical or solid outside empirical information, particularly for 
complex models with many interdependent parameters.    
 
References and Recommended Readings 
Browne, W.J. (1998). Applying MCMC methods to multilevel models. Bath, UK: University of Bath. 
Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 

473–514. 
Burton, P., Gurrin, L., & Sly, P. (1998). Extending the simple linear regression model to account for correlated responses: an introduction to 

generalized estimating equations and multi‐level mixed modelling. Statistics in medicine, 17, 1261-1291. 
Dempster, A. P., Rubin, D. B., & Tsutakawa, R. K. (1981). Estimation in covariance components models. Journal of the American Statistical 

Association, 76, 341-353. 
Depaoli, S. (2014). The impact of inaccurate “informative” priors for growth parameters in Bayesian growth mixture modeling. Structural 

Equation Modeling: A Multidisciplinary Journal, 21(2), 239–252. 
Eliason, S. R. (1993). Maximum likelihood estimation: Logic and practice (Vol. 96). Newbury Park, NJ: Sage Publications. 
Enders, C. K. (2022). Applied missing data analysis. Guilford Publications. 
Fisher, R. A. (1950). Contributions to mathematical statistics. New York: Wiley. 
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian 

Analysis, 1(3), 515-534. 
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73, 43–56. 
Goldstein,H. (1987). Multilevel covariance component models. Biometrika, 74, 430-31 
Goldstein, H. (1989). Restricted unbiased iterative generalized least-squares estimation. Biometrika, 76, 622-623. 
Hox, J., & McNeish, D. (2020). Small samples in multilevel modeling. n R. Van de Schoot & M. Miočević (Eds.), Small sample size solutions, 

(215-225). Routledge. 
Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.  
Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., & Jones, D. R. (2005). How vague is vague? a simulation study of the impact of the 

use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24(15), 2401–2428. 
Liang, K.Y., and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. 
Lindley, D.V., & Smith, A.F.M. (1972). Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B, 34, 1–41. 
Mason, W. M., Wong, G. M., Entwistle, B.: Contextual analysis through the multilevel linear model. In S. Leinhardt (Ed.) Sociological 

methodology, San francisco, Jossey-Bass, 1983, 72–103 
Maas, C. J., & Hox, J. J. (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica, 58(2), 127-137. 
Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1, 86-92. 
McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 

23(5), 750-773. 
McNeish, D. (2017). Small sample methods for multilevel modeling: A colloquial elucidation of REML and the Kenward-Roger correction. 

Multivariate behavioral research, 52(5), 661-670. 
McNeish, D. M., & Stapleton, L. M. (2016a). The effect of small sample size on two-level model estimates: A review and illustration. Educational 

Psychology Review, 28(2), 295-314.  
McNeish, D., & Stapleton, L. M. (2016b). Modeling clustered data with very few clusters. Multivariate Behavioral Research, 51, 495–518. 
Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999). The analysis of repeated measurements: A comparison of mixed-model 

Satterthwaite F tests and a nonpooled adjusted degrees of freedom multivariate test. Communications in Statistics-Theory and Methods, 28, 
2967–2999.  

Raudenbush, S., & Bryk, A. S. (1986). A hierarchical model for studying school effects. Sociology of education, 59, 1-17. 
Zeger, S.L., and Karim, M.R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American 

Statistical Association, 86, 79–86. 



Newsom    
Psy 526/626 Multilevel Regression, Spring 2024       4 
 

Summary of Multilevel Estimation Methods for Continuous Dependent Variables 
Estimation 
Method 

Description Algorithms Comments  

Full Information 
Maximum 
Likelihood (ML 
or FML: 
Goldstein, 1986; 
Longford, 1987) 

Estimates variances and covariances (e.g., 2
0τ  and 

01τ ) assuming known values for the regression 
coefficients (rather than estimates of the population 
values).  Estimation uses fixed coefficients in the 
likelihood function. Between group variance estimates, 
(e.g., 2

0τ  and 01τ ),  underestimated. 

• Iterated Generalized Least Squares (IGLS; 
Goldstein, 1986; 1987) 

• Gauss-Newton scoring method 

As long as the residuals are normally distributed 
IGLS is a good algorithm for ML. ML is usually 
preferable for comparing deviances of models 
differing in the fixed effects, because it includes 
regression coefficients in the likelihood function 
(i.e., use ML to compare deviances to test 
subsets of predictor variables) 

Restricted or 
Residual 
Maximum 
Likelihood 
(REML or RML:  
Goldstein, 1989; 
Mason, Wong, 
Entwistle, 1983; 
Raudenbush & 
Bryk, 1986) 

Estimates of variances and covariances assuming 
regression coefficients are unknown.  Estimation done 
separately for random and fixed coefficients. Unbiased 
estimate of between group variances.  ML and REML 
have similar results if the number of groups is large, 
but preferable to ML for small samples (Browne, 1998; 
Browne & Draper, 2006; Longford, 1993; McNeish & 
Stapleton, 2016b) 

• Restricted Iterated Generalized Least Squares 
(RIGLS: Goldstein, 1986, 1987, 1989) 

• Expectation Maximization (EM:  Bryk & 
Raudenbush, 1992) 

• Fisher Scoring (Longford, 1993)-equivalent to 
IGLS 

• Gauss-Newton scoring method 

REML is the default, but ML can be requested 
under “basic specifications” in HLM or by using 
/METHOD = ML in SPSS  or REML = FALSE in 
R.  Deviance comparisons used only for testing 
random coefficients (i.e., do not use REML and 
compare deviances to test subsets of fixed 
coefficients). 

Empirical Bayes 
Estimates (EB: 
Dempster, 
Rubin, 
Tsutakawa, 
1981; Lindley & 
Smith, 1972) 

EB estimates are used in the estimation of particular 
group intercept or slopes (e.g., plotting, or assumption 
checking). The REML estimation in multilevel models 
can be interpreted from an EB perspective (see 
Raudenbush & Bryk, 2002, Chapter 13). Each group 
intercept or slope value is based on information from 
the grand mean (γ00) and the average slope value 
(e.g., γ10) across all groups as well as the slope 
estimate from each group (as in the OLS estimation) 
weighted by the reliability.  Groups with larger sizes 
are more heavily weighted toward the OLS estimate 
and groups with smaller sizes are weighted more 
heavily toward the full sample estimates (γ00 and γ10).  

• Empirical Bayes or “shrinkage” estimates of 
intercepts and slopes are derived from the REML 
or ML process (see Raudenbush & Bryk, 2002, p. 
47, Chapter 13) 

• When requesting plots for random slopes or 
intercept and slope estimates for each group  

Bayes estimates are output in a “residual” file in 
HLM if requested under Basic Specifications.  
Can be used to assess normality assumption 
and are the values used in plots in HLM and the 
R method I demonstrated (the SPSS method I 
demonstrated uses OLS estimates, which are 
not shrunken).  

Robust 
standard error 
estimates 
(Liang & Zeger, 
1986) 

Estimation of the standard errors for the fixed effects 
that corrects for biases (usually underestimation) due 
to non-normality of the dependent variable.  Gives the 
best estimates when there is a large number of 
groups.  The distribution of the dependent variable (or 
rather the residual distribution) is taken into account in 
computation of the standard errors. 

• HLM uses a General Estimating Equation (GEE) 
approach (Liang & Zeger, 1986; Burton, Gurrin, & 
Sly, 1998) 

• Other packages such as Mlwin use a Huber-
White, Eicker-Huber-White, or “sandwich 
estimator”  (Eicker, 1963; Huber, 1967; White, 
1980) 

As long as the number of groups is moderately 
large (relative to the number of coefficients 
estimated) the robust estimates are usually 
preferable. Use with caution if there are less than 
100 groups. 

Bayesian 
Estimation 
(MCMC; Zeger 
& Karim, 1991) 

 • Markov chain Monte Carlo (MCMC) e.g., Gibbs 
sampler (Zeger & Karim, 1991) 

• Statistical packages such as BUGS/OpenBugs or 
RStan (using Gibbs/MCMC) use EB approaches 
more explicitly in model estimation. The Bayes 
factors approach is available in Mplus and MLWin. 

Multilevel Bayesian estimation can be found in 
the R package brms and Mplus. Mplus offers a 
Bayes factors (Kass & Raftery, 1995) approach 
used to compare the relative likelihood of two 
hypotheses rather than compare an obtained 
sample coefficient to a null hypothesis value. 
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