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Practical Approaches to Dealing with Nonnormal and Categorical Variables 
 
Definitions and Distinctions 
First, it is important to distinguish between categorical variables and continuous variables.  Categorical 
variables are those with two values (i.e., binary, dichotomous) or those with a few ordered categories.  
Examples might include gender, dead vs. alive, audited vs. not audited, or variables with few response 
options like “never,” “sometimes,” or “always.”  Continuous variables are variables measured on a ratio or 
interval scale, such as temperature, height, or income in dollars.   
 
There is some ambiguity and debate about how to classify variables measured on an ordinal scale when 
there are relatively few categories, say 3 to 5 categories.  There are several considerations: (1) whether the 
values between categories are equidistant; (2) whether the relationship between the categorical measured 
variable and the theoretical variable it is supposed to measure is a linear relationship—another way of 
stating (1); (3) how skewed or kurtotic the ordered categorical variable is.  If the categories are not 
equidistant, do not have a linear relationship with the underlying variable, or are heavily skewed or kurtotic, 
it may be wise to consider the variable categorical and to use an approach designed for categorical 
variables (see below).  If the categories are equidistant, have a linear relationship with the underlying 
variable, and are not heavily skewed or kurtotic, then usual ML estimation will probably give estimates that 
are not highly problematic. 
 
Ordinal variables with many categories, such as 7-point Likert-type scales of agreement, are usually treated 
as “continuous.”  If they are nonnormal, then data analytic techniques for nonnormal continuous variables 
should be used (see below). 
 
Detection  
So, how do you know your data are multivariate normal?  The first step is to carefully examine univariate 
distributions and skew and kurtosis.  West, Finch, & Curran (1995) recommend concern if skewness > 2 
and kurtosis > 7.  Kurtosis is usually a greater concern than skewness.  If the univariate distributions are 
nonnormal, then the multivariate distribution will be nonnormal.  One can have multivariate nonnormality 
(i.e., the joint distributions of all the variables is a nonnormal joint distribution) even when all the individual 
variables are normally distributed (although this is relatively infrequent in practice).  Therefore, one should 
also examine multivariate kurtosis and skewness.  However, tests of multivariate normality are only 
available in EQS and Lisrel.  Mardia’s multivariate skewness and kurtosis tests are distributed normally (z-
test) in very large samples, so can be evaluated against a t or z-distribution.  EQS also provides a 
“normalized estimate” of Mardia’s kappa.  Bentler and Wu (2002) suggest that a normalized estimate 
greater than 3 will lead to chi-square and standard error biases.  Lawrence DeCarlo (1997) has developed 
macros for SPSS and SAS to calculate a variety of multivariate nonnormality indices (available at 
http://www.columbia.edu/~ld208/). 
 
Recommendations for Continuous Nonnormal Variables 
In practice, many structural equation models with continuous variables (and generally including ordinal 
variables of five categories or more) will not have severe problems with nonnormality.  The effect of violating 
the assumption of nonnormality is that chi-square is too large (so too many models are rejected) and 
standard errors are too small (so significance tests of path coefficients will result in Type I error). 
 
The scaled chi-square and “robust” standard errors using the method developed by Satorra and Bentler 
(1994) appears to be a good general approach to dealing with nonnormality (Hu, Bentler, & Kano, 1992; 
Curran, West, & Finch, 1996).  Adjustments are made to the chi-square (and to relative fit indices in some 
packages, such as Mplus and EQS) and standard errors based a weight matrix derived from an estimate of 
multivariate kurtosis.  Mplus prints this kurtosis adjustment, referred to as the “scaling correction factor” 
(SCF). The scaling correction factor is the standard chi-square divided by the scaled chi-square. The ratio is 
derived from a multivariate kurtosis estimate used to adjust the chi-square and standard errors. When data 
are multivariate normal, this scaling correction factor is 1.0, and there is no adjustment to the standard ML 
chi-square.  The more multivariate kurtosis, the larger this scaling correction factor will be (e.g., 1.6 
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suggests the ML chi-square is approximately 60% higher than the scaled chi-square).  At this point, no one 
has suggested a conventional value for the scaling correction factor that would indicate problematic levels 
of nonnormality, but I become more concerned when the chi-square inflation is greater than 5 or 10% (SCF 
of 1.05 or 1.10).   
 
Depending on the complexity of the model and the severity of the problem, sample sizes of 200-500 may be 
sufficient for good estimates with these “robust” statistics, but, to be safe, sample sizes of over 500 may be 
best. This approach is now available in Lisrel (ML Robust), EQS (ML Robust), and Mplus (MLM for 
maximum likelihood mean adjusted).  The most recent version of Mplus has made the Satorra-Bentler 
estimates the default, and this could be a concern with the smallest sample sizes. 
 
Bootstrapping is an increasingly popular and promising approach to correcting standard errors, but it seems 
that more work is needed to understand how well it performs under various conditions (e.g., specific 
bootstrap approach, sample sizes needed).  The simulation work that has been done (Fouladi, 1998; 
Hancock & Nevitt,1999; Nevitt & Hancock, 2001) suggests that, in terms of bias, a standard “naïve” 
bootstrap seems to work at least as well as robust adjustments to standard errors.  However, the Nevitt and 
Hancock (2001) results suggest that standard errors may be erratic for sample size of 200 or less and 
samples of 500 to 1,000 may be necessary to overcome this problem.  The complexity of the model should 
be taken into account as their simulations were based on a moderately complex factor model (i.e., smaller 
sample sizes may be acceptable for simpler models).  An alternative bootstrapping approach, the Bollen-
Stine bootstrap approach, is usually recommended for estimation of chi-square.  The Bollen-Stine chi-
square approach seems to adequately control Type I error but there is some cost to power (Nevitt & 
Hancock, 2001). Bootstrapping approaches have now been incorporated in most major SEM packages. 
 
Recommendations for Categorical Variables 
There seems to be growing consensus that the best approach to analysis of categorical variables (with few 
categories) is the CVM approach implemented in Mplus.  This approach, usually referred to as a robust 
weighted least squares (WLS) approach in the literature (estimator = WLSMV or WLSM in Mplus).  The 
WLSMV approach seems to work well if sample size is 200 or better (Muthen, du Toit, & Spisic, 1997).  In 
packages other than Mplus, researchers have typically employed WLS estimation with polychoric 
correlations.  In the most recent edition of Amos, an alternative approach to categorical variables has been 
added.  The Bayesian approach requires an iterative process known as the Markov Chain Monte Carlo 
(MCMC).  At this point in time, there is little information on the performance of this approach with SEM with 
respect to fit estimation, the optimal algorithms to use, and standard errors under various conditions (cf. Lee 
& Yang, 2006), so I cannot recommend this approach to categorical variables yet. 
 
Fit Indices 
Relatively little work has been done on the effects of nonnormality on alternative fit indices (e.g., RMSEA, 
IFI, CFI).  Programs sometimes do not recalculate incremental fit indices such as the CFI, TLI, or the IFI 
using the scaled chi-square for the tested model or the null model (although Mplus and EQS do use the 
scaled chi-squares in their calculation), but relative fit indices will likely be problematic without this scaling 
corrections to the null model (Hu & Bentler, 1999). 
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