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Practical Approaches to Dealing with Nonnormal and Categorical Variables

Definitions and Distinctions

First, it is important to distinguish between categorical variables and continuous variables. Categorical
variables are those with two values (i.e., binary, dichotomous) or those with a few ordered categories.
Examples might include gender, dead vs. alive, audited vs. not audited, or variables with few response
options like “never,” “sometimes,” or “always.” Continuous variables are variables measured on a ratio or
interval scale, such as temperature, height, or income in dollars.

There is some ambiguity and debate about how to classify variables measured on an ordinal scale when
there are relatively few categories, say 3 to 5 categories. There are several considerations: (1) whether the
values between categories are equidistant; (2) whether the relationship between the categorical measured
variable and the theoretical variable it is supposed to measure is a linear relationship—another way of
stating (1); (3) how skewed or kurtotic the ordered categorical variable is. If the categories are not
equidistant, do not have a linear relationship with the underlying variable, or are heavily skewed or kurtotic,
it may be wise to consider the variable categorical and to use an approach designed for categorical
variables (see below). If the categories are equidistant, have a linear relationship with the underlying
variable, and are not heavily skewed or kurtotic, then usual ML estimation will probably give estimates that
are not highly problematic.

Ordinal variables with many categories, such as 7-point Likert-type scales of agreement, are usually treated
as “continuous.” If they are nonnormal, then data analytic techniques for nonnormal continuous variables
should be used (see below).

Detection

So, how do you know your data are multivariate normal? The first step is to carefully examine univariate
distributions and skew and kurtosis. West, Finch, & Curran (1995) recommend concern if skewness > 2
and kurtosis > 7. Kurtosis is usually a greater concern than skewness. If the univariate distributions are
nonnormal, then the multivariate distribution will be nonnormal. One can have multivariate nonnormality
(i.e., the joint distributions of all the variables is a nonnormal joint distribution) even when all the individual
variables are normally distributed (although this is relatively infrequent in practice). Therefore, one should
also examine multivariate kurtosis and skewness. However, tests of multivariate normality are only
available in EQS and Lisrel. Mardia’s multivariate skewness and kurtosis tests are distributed normally (z-
test) in very large samples, so can be evaluated against a t or z-distribution. EQS also provides a
“normalized estimate” of Mardia’s kappa. Bentler and Wu (2002) suggest that a normalized estimate
greater than 3 will lead to chi-square and standard error biases. Lawrence DeCarlo (1997) has developed
macros for SPSS and SAS to calculate a variety of multivariate nonnormality indices (available at
http://www.columbia.edu/~1d208/).

Recommendations for Continuous Nonnormal Variables

In practice, many structural equation models with continuous variables (and generally including ordinal
variables of five categories or more) will not have severe problems with nonnormality. The effect of violating
the assumption of nonnormality is that chi-square is too large (so too many models are rejected) and
standard errors are too small (so significance tests of path coefficients will result in Type | error).

The scaled chi-square and “robust” standard errors using the method developed by Satorra and Bentler
(1994) appears to be a good general approach to dealing with nonnormality (Hu, Bentler, & Kano, 1992;
Curran, West, & Finch, 1996). Adjustments are made to the chi-square (and to relative fit indices in some
packages, such as Mplus and EQS) and standard errors based a weight matrix derived from an estimate of
multivariate kurtosis. Mplus prints this kurtosis adjustment, referred to as the “scaling correction factor”
(SCF). The scaling correction factor is the standard chi-square divided by the scaled chi-square. The ratio is
derived from a multivariate kurtosis estimate used to adjust the chi-square and standard errors. When data
are multivariate normal, this scaling correction factor is 1.0, and there is no adjustment to the standard ML
chi-square. The more multivariate kurtosis, the larger this scaling correction factor will be (e.g., 1.6
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suggests the ML chi-square is approximately 60% higher than the scaled chi-square). At this point, no one
has suggested a conventional value for the scaling correction factor that would indicate problematic levels
of nonnormality, but | become more concerned when the chi-square inflation is greater than 5 or 10% (SCF
of 1.05 or 1.10).

Depending on the complexity of the model and the severity of the problem, sample sizes of 200-500 may be
sufficient for good estimates with these “robust” statistics, but, to be safe, sample sizes of over 500 may be
best. This approach is now available in Lisrel (ML Robust), EQS (ML Robust), and Mplus (MLM for
maximum likelihood mean adjusted). The most recent version of Mplus has made the Satorra-Bentler
estimates the default, and this could be a concern with the smallest sample sizes.

Bootstrapping is an increasingly popular and promising approach to correcting standard errors, but it seems
that more work is needed to understand how well it performs under various conditions (e.g., specific
bootstrap approach, sample sizes needed). The simulation work that has been done (Fouladi, 1998;
Hancock & Nevitt,1999; Nevitt & Hancock, 2001) suggests that, in terms of bias, a standard “naive”
bootstrap seems to work at least as well as robust adjustments to standard errors. However, the Nevitt and
Hancock (2001) results suggest that standard errors may be erratic for sample size of 200 or less and
samples of 500 to 1,000 may be necessary to overcome this problem. The complexity of the model should
be taken into account as their simulations were based on a moderately complex factor model (i.e., smaller
sample sizes may be acceptable for simpler models). An alternative bootstrapping approach, the Bollen-
Stine bootstrap approach, is usually recommended for estimation of chi-square. The Bollen-Stine chi-
square approach seems to adequately control Type | error but there is some cost to power (Nevitt &
Hancock, 2001). Bootstrapping approaches have now been incorporated in most major SEM packages.

Recommendations for Categorical Variables

There seems to be growing consensus that the best approach to analysis of categorical variables (with few
categories) is the CVM approach implemented in Mplus. This approach, usually referred to as a robust
weighted least squares (WLS) approach in the literature (estimator = WLSMV or WLSM in Mplus). The
WLSMV approach seems to work well if sample size is 200 or better (Muthen, du Toit, & Spisic, 1997). In
packages other than Mplus, researchers have typically employed WLS estimation with polychoric
correlations. In the most recent edition of Amos, an alternative approach to categorical variables has been
added. The Bayesian approach requires an iterative process known as the Markov Chain Monte Carlo
(MCMC). At this point in time, there is little information on the performance of this approach with SEM with
respect to fit estimation, the optimal algorithms to use, and standard errors under various conditions (cf. Lee
& Yang, 2006), so | cannot recommend this approach to categorical variables yet.

Fit Indices

Relatively little work has been done on the effects of nonnormality on alternative fit indices (e.g., RMSEA,
IFI, CFIl). Programs sometimes do not recalculate incremental fit indices such as the CFI, TLI, or the IFI
using the scaled chi-square for the tested model or the null model (although Mplus and EQS do use the
scaled chi-squares in their calculation), but relative fit indices will likely be problematic without this scaling
corrections to the null model (Hu & Bentler, 1999).
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