
Newsom   
Psy 525/625 Categorical Data Analysis, Spring 2021   1 
 

Three-Way Contingency Tables 
 
Three-way contingency tables involve three binary or categorical variables. I will stick mostly to the 
binary case to keep things simple, but we can have three-way tables with any number of categories with 
each variable. Of course, higher dimensions are also possible, but they are uncommon in practice and 
there are few commonly available statistical tests for them.  
 
Notation 
We described two-way contingency tables earlier as having I rows and J columns, forming an I × J 
matrix.  If a third variable is included, the three-way contingency table is described as I × J × K, where I 
is the number of rows, J is the number of columns, and K is the number of superordinate columns each 
level containing a 2 × 2 matrix.  The indexes i, j, and k are used to enumerate the rows or columns for 
each dimension. Each within-cell count or joint proportion has three subscripts now, nijk and pijk. There 
are two general types of marginal counts (or proportions), with three specific marginals for each type.  
The first type of marginal count combines one of the three dimensions. Using the + notation from two-
way tables, the marginals combining counts across either I, J, or K dimensions are  n+jk, ni+k, or nij+, 
respectively. The second general type of marginal collapses two dimensions and is given as ni++, n+j+, or 
n++k.  The total count (sample size) is n+++ (or sometimes just n). The simplest case is a 2 × 2 × 2 shown 
below to illustrate the notation.   
 

k = 1 k = 2 
n111 n121 n1+1 
n211 n221 n2+1 
n+11 n+21 n++1 

 

n112 n122 n1+2 
n212 n222 n2+2 
n+12 n+22 n++2 

 

Note: marginals collapsing across levels of K are not shown.  
 
In the Azen and Walker text as well as elsewhere, the three variables are referred to by letter names X, 
Y, and Z.1  Although we do not need to assign explanatory (independent) and response (dependent) 
roles to the variables for all hypotheses that might be tested, it can be easier to put the table into more 
familiar terms by imagining one response variable Y (with its J number of levels) and two explanatory 
variables, X and Z (with I and K number of levels, respectively). Thinking in this way, we now have the 
conceptual equivalent of a ANOVA design, where Y is the (binary) dependent variable and X and Z are 
two independent variables. One common hypothesis of interest is to examine the X effect on Y at 
different levels of Z, which is the same question asked in the test of the two-way factorial ANOVA (e.g., is 
the X group difference on Y the same for Z1 and Z2?). It is important to note that this is the real analogy to 
ANOVA for at least one possible or common hypothesis that can be tested with three-way contingency 
table. Azen and Walker use the three-way ANOVA as an analogy throughout the chapter for a different 
reason. Their intention is to use the three-way ANOVA analogy for the three-way contingency table to 
describe the process by which the researcher should proceed in analysis steps (e.g., examining the 
three-way table first, and then depending on the results pursuing two-dimensional or one-dimensional 
comparisons). So, be careful not to confuse their process analogy to ANOVA with the statistical test 
analogy to ANOVA. 
 
Partial Tables 
There are two 2 × 2 tables above that make up the three-way table—an X × Y table within Z1 and an X × 
Y table within Z2. These are known as partial tables. Although partial tables can be constructed for levels 
of the X or levels the Y variable also, it is most common to set up three-way tables in this manner and 
discuss the X × Y partial tables within levels (or strata) of Z. Marginals for the two-way partial tables can 
be expressed as conditional proportions, similar to the simple conditional proportion in the two-way case.  
The notation pij|k denotes one type of conditional proportion, which is the within-cell count relative to the 

                                                           
1 Many authors use A, B, and C, but this is easily confused with the fourway table notation.  
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number of cases within one level of Z, pij|k = nijk/n++k. Of course, we could also compute other conditional 
proportions, such as pi|jk or pjk|i and so on. 
 
If the two I × J contingency tables are considered separately, we could compute odds ratios as before, 
adding to the notation to indicate that the odds ratio is specific to one level of the Z variable.  Following 
the notation in your text, we use X, Y, and Z and the Greek letter θ (“theta”) for the odds ratio.  
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If we were to calculate these odds ratios for each level of Z and then average them taking into account 
the different number of cases in each stratum of Z, we get a common odds ratio called the Mantel-
Haenszel (MH) odds ratio. 
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The Mantel-Haenszel is the common odds ratio and assumes that the odds ratio does not differ across 
the levels of Z, so it may not be of interest itself in many circumstances. It can be used, however, if the 
test of whether the X and Y are associated overall by assessing the weighted average of this relationship 
over the levels of Z is of interest and the odds do not differ substantially across the levels. 
 
Breslow-Day Test 
Perhaps the most useful test is a test of the hypothesis that the X-Y association differs across levels of Z, 
known as the Brelow-Day test (Breslow & Day, 1980). Later modified by Tarone (1985), it is sometimes 
referred to as the Breslow-Day-Tarone test.  If there is no difference across levels of Z, the X-Y 
relationship is homogeneous.  Another way to state this hypothesis test is as an evaluation of whether 
the partial table odds ratios are equal across the levels of Z, that 

1 2| |XY Z XY Zθ θ= .  
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In the numerator, we have an alteration of the usual chi-squared statistics in which of the expected 
values are subtracted from the observed values, except that the observed and the expected values are 
for partial tables for each level of Z (indexed by subscript k for each stratum of Z), with the expected 
values taking into account the Mantel-Haenszel odds ratio, θMH. The expected values, ( )1 |k MHE Y θ , and 
variance estimate, ( )1 |k MHV Y θ , in the denominator are considerably more complicated than for the two-
way contingency table.2 The Breslow-Day test is only for 2× 2× k tables, so X and Y must be binary. The 

2
BDχ  can be evaluated against the chi-squared distribution with df = K -1 if the Tarone modification is 

used. Significance implies 
1 2| |XY Z XY Zθ θ≠  but also that 

1 2| |XZ Y XZ Yθ θ≠ and 
1 2| |YZ X YZ Xθ θ≠ for the 2× 2× 2 case. If 

there are many strata for Z (i.e., K is large) and data are sparse, then an exponential weighted average 
of the common odds ratio (Woolf, 1955) is more efficient.  
 
                                                           
2 Since you are not afraid to look, here is the computations for these two quantities (Hosmer & Lemeshow, 2000):
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I suspect that most social scientist are interested in testing the hypothesis for which the Breslow-Day test 
is designed, that the odds ratio at each level of Z is equal. If this is the question of interest, here is an 
overview of the process you might use: 
     

 
 
Cochran-Mantel-Haenszel 
A special case of the homogeneity of association is the Cochran-Mantel-Haenszel (CMH) test that the 
odds ratios for all partial tables are equal to 1, which is referred to as a test of conditional independence.  
For the 2× 2× 2 case, it is a test of the null hypothesis that

1 2| | 1XY Z XY Zθ θ= = , but also whether 
1 2| | 1XZ Y XZ Yθ θ= =

and 
1 2| | 1YZ X YZ Xθ θ= = .   If the test is significant, it may be due to any one of the partial tables with an odds 

ratio above or below 1.0. The computation of the CMH follows the general Pearson chi-squared equation 
and can be stated as a likelihood ratio, G2, as well. The computation of the expected values is 
considerably simpler than for the Breslow-Day test. 
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Both CMH tests are evaluated against the chi-squared distribution with df = IJK – I – J – K + 2. 
 
Logistic Regression 
Logistic regression can be used to test the same hypotheses as those investigated with the Mantel-
Haenszel odds ratio and the Breslow-Day tests, and the logistic regression approach is probably the 
more commonly employed. As you may have guessed, the corresponding hypothesis in logistic 
regression is investigated by testing the X*Z interaction in predicting Y. Such tests are not exactly equal 
even though they address the same hypothesis (see Hosmer & Lemeshow, 2000, for a discussion). The 
association tests discussed above do not require assigning explanatory (independent) and response 
(dependent) roles to the variables per se. Logistic regression models assume that one of the three 
variables is a response (usually Y in our examples above) and the other two (X and Z in our examples 
above) are explanatory. The maximum likelihood estimation as well as the more general framework of 
the logistic regression modeling set the logistic approach apart somewhat from the Mantel-Haenszel 
odds ratio and Breslow-Day tests. We will return to how to test these hypotheses with logistic regression 
in a later section of the course.  
 
Other Three-Way Table Hypotheses 
The Breslow-Day and the Cochran-Mantel-Haenszel are the most commonly employed hypothesis tests, 
but, with a three-way contingency table, there are many possibilities. With the properly derived expected 
frequencies, a variety of tests can investigate whether variables X, Y, and Z are independent from one 
another.  Wickens (1989) discusses association tests can be formulated with loglinear models.  Using 
bracket notation, different tests can be distinguished by which variables are independent from one 
another. For example, [X][Y][X] indicates that each of the three variables are independent from one 

2
BDχ

ns
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another, whereas [XY][Z] indicates that Z is unrelated to X and Y.  A nodal diagram can also be used to 
depict these relations, with the diagram below reflecting the independence implied by [XY][Z]. 

 
Loglinear modeling is a general and very flexible framework which will be introduced in the next section 
of the course.  
 
Software Examples 
To illustrate statistical tests of three-way contingency tables, I used data from the 2020 Quinnipiac 
presidential poll conducted in Ohio and Georgia.3  The Breslow-Day test examines whether 
independents were more likely to favor Biden or Trump, comparing this association across the two 
states. 
 
SPSS 
get file='c:\jason\spsswin\cdaclass\quinnipiac 2020 3way.sav'. 
 
output comment text="OH". 
temporary. 
select if state eq 0. 
crosstabs /tables=ind by response 
   /statistics=none 
  /cells=count row. 
 
output comment text="GA". 
temporary. 
select if state eq 1. 
crosstabs /tables=ind by response 
   /statistics=none 
  /cells=count row. 
 
crosstabs /tables=ind by response by state 
   /statistics=cmh 
  /cells=none. 
 

OH 

 
 
GA 

 
                                                           
3 Data source: https://poll.qu.edu/georgia/release-detail?ReleaseID=3679. Note that the data extrapolated cell sample sizes and used some 
rounding, so the results should be taken as only approximate. 

X Y

Z

https://poll.qu.edu/georgia/release-detail?ReleaseID=3679
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R 
> library(haven)  
> d = read_sav("c:/jason/spsswin/cdaclass/quinnipiac 2020 3way.sav") 
>  
> library(lessR)   
> #if need to convert data types in order to compute a correlation in R--lessR function 
> #d <-Transform(response = as.numeric(response)) 
>   
> d1 <- Subset(state=0) 
 
>  
> #this lessR BarChart function produces a chi-square test by default 
> BarChart (response, by=ind, horiz = FALSE, stat = "proportion", beside = TRUE, xlab="Response: Trump=0, 
Biden=1", data=d1) 
 
Joint and Marginal Frequencies  
------------------------------  
  
response  
ind     0    1  Sum  
  0   631  775 1406  
  1   235  319  554  
  Sum 866 1094 1960  
 
 
Cramer's V (phi): 0.022  
  
Chi-square Test:  Chisq = 0.975, df = 1, p-value = 0.323  
 
 
Cell Proportions within Each Column  
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-----------------------------------  
  
response  
ind       0     1  
  0   0.729 0.708  
  1   0.271 0.292  
  Sum 1.000 1.000 
 
 
> d2 <- Subset(state=1) 
 
> #this lessR BarChart function prosduces a chi-square test by default 
> BarChart (response, by=ind, horiz = FALSE, stat = "proportion", beside = TRUE, xlab="Response: Trump=0, 
Biden=1", data=d1) 
 
Joint and Marginal Frequencies  
------------------------------  
  
response  
ind     0    1  Sum  
  0   631  775 1406  
  1   235  319  554  
  Sum 866 1094 1960  
 
 
Cramer's V (phi): 0.022  
  
Chi-square Test:  Chisq = 0.975, df = 1, p-value = 0.323  
 
 
Cell Proportions within Each Column  
-----------------------------------  
  
response  
ind       0     1  
  0   0.729 0.708  
  1   0.271 0.292  
  Sum 1.000 1.000 
 
> counts <-array( 
+   c(308,401,132,191,323,374,103,128), 
+   dim=c(2, 2, 2), 
+   dimnames=list(state=c("OH", "GA"), 
+                 ind =c("party aff", "independent"), 
+                 response  =c("Biden", "trump")) 
+ ) 
 
> library(DescTools) 
> BreslowDayTest(counts,correct=FALSE) 
 
 Breslow-Day test on Homogeneity of Odds Ratios 
 
data:  counts 
X-squared = 0.02913, df = 1, p-value = 0.8645 
 
> mantelhaen.test(counts) 
 
 Mantel-Haenszel chi-squared test with continuity correction 
 
data:  counts 
Mantel-Haenszel X-squared = 0.69909, df = 1, p-value = 0.4031 
alternative hypothesis: true common odds ratio is not equal to 1 
95 percent confidence interval: 
 0.896715 1.335499 
sample estimates: 
common odds ratio  
         1.094332 
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SAS 
proc import datafile="c:\jason\spsswin\cdaclass\quinnipiac 2020 3way.sav" out=one 
dbms = sav replace; 
run; 
 
proc freq data=one; 
   tables state*ind*response /cmh ; 
 title 'Test of 3-Way Table'; 
run; 
The FREQ Procedure 
 
Table 1 of ind by response 
Controlling for state=OH 
 
ind(ind)         response(response) 
 
Frequency       ‚ 
Percent         ‚ 
Row Pct         ‚ 
Col Pct         ‚Trump   ‚Biden   ‚  Total 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
party affiliate ‚    308 ‚    401 ‚    709 
                ‚  29.84 ‚  38.86 ‚  68.70 
                ‚  43.44 ‚  56.56 ‚ 
                ‚  70.00 ‚  67.74 ‚ 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
independent     ‚    132 ‚    191 ‚    323 
                ‚  12.79 ‚  18.51 ‚  31.30 
                ‚  40.87 ‚  59.13 ‚ 
                ‚  30.00 ‚  32.26 ‚ 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total                440      592     1032 
                   42.64    57.36   100.00 
 
 
Table 2 of ind by response 
Controlling for state=GA 
 
ind(ind)         response(response) 
 
Frequency       ‚ 
Percent         ‚ 
Row Pct         ‚ 
Col Pct         ‚Trump   ‚Biden   ‚  Total 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
party affiliate ‚    323 ‚    374 ‚    697 
                ‚  34.81 ‚  40.30 ‚  75.11 
                ‚  46.34 ‚  53.66 ‚ 
                ‚  75.82 ‚  74.50 ‚ 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
independent     ‚    103 ‚    128 ‚    231 
                ‚  11.10 ‚  13.79 ‚  24.89 
                ‚  44.59 ‚  55.41 ‚ 
                ‚  24.18 ‚  25.50 ‚ 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total                426      502      928 
                   45.91    54.09   100.00 
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The FREQ Procedure 
 
Summary Statistics for ind by response 
Controlling for state 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1      0.7864    0.3752 
    2        Row Mean Scores Differ     1      0.7864    0.3752 
    3        General Association        1      0.7864    0.3752 
 
 
                        Common Odds Ratio and Relative Risks 
 
Statistic                   Method                  Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Odds Ratio                  Mantel-Haenszel        1.0943        0.8967        1.3355 
                            Logit                  1.0943        0.8967        1.3355 
 
Relative Risk (Column 1)    Mantel-Haenszel        1.0521        0.9395        1.1781 
                            Logit                  1.0517        0.9393        1.1777 
 
Relative Risk (Column 2)    Mantel-Haenszel        0.9615        0.8824        1.0477 
                            Logit                  0.9613        0.8823        1.0474 
 
 
   Breslow-Day Test for 
Homogeneity of Odds Ratios 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square          0.0291 
DF                       1 
Pr > ChiSq          0.8645 
 
 
Total Sample Size = 1960 
 
 
Sample Write-Up 
A Breslow-Day test was used to investigate whether the association between identification as an 
independent (identified with a major party vs. independent) and candidate preference (Biden vs. Trump) 
was the same in Ohio and Georgia.  Among Ohioans, 56.56% of respondents identifying with a major 
party favored Biden, whereas 59.13% of respondents identifying as independent favored Biden.  Among 
Georgians, 53.66% of respondents identifying with a major party favored Biden, whereas 55.41% of 
respondents identifying with a major party favored Biden.  The Breslow-Day test indicated that the 
association between party identification and the candidate preference did not differ significantly between 
Ohio and Georgia, ( )2 1 .029BDχ = , p = .86.  The common odds ratio indicated no overall difference in 
candidate preference by party identification, ORMH = 1.09, 95% CI = .90, 1.34. Follow-up analyses [not 
shown above] indicated that there was no association between independent identification and the 
candidate favored within state, Pearson χ2(1) = .60, p = .44, for Ohio, and Pearson χ2(1) = .21, p = .64, for 
Georgia.4 

                                                           
4 It might be desirable to go one step further and test the marginals to determine whether Biden or Trump was favored overall. 
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