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Survival Analysis 
 
Survival analysis, sometimes called event history analysis, is used for longitudinal data in which the 
outcome is a binary event (e.g., heart attack, death, purchase of a car, college graduation) and it is 
possible for the event to occur for some individuals after the study ends.  The data are considered 
“censored” for cases that do not experience the event by the end of the study.1  Some of these cases 
may have experienced the event and some may have not experienced the event had the study 
continued. Ignoring censoring, however, will lead to potentially biased estimates and statistical tests.  
Thus, it is inappropriate to use standard ordinary least squares regression or logistic regression to predict 
the occurrence of the event or the time to occurrence of the event. 
 
There are two common approaches to survival analysis, discrete time survival analysis, and Cox 
regression (also referred to as "proportional hazard models"), and I will focus on these approaches here.  
There are several other approaches (e.g., accelerated failure time models, Weibull, log-normal), but they 
tend to be used less often in the social sciences.  Discrete time survival analysis is designed for 
instances where there are few time points measured and the exact time that the event may not be 
known. Cox models are intended for the circumstance in which there are many time periods measured or 
the exact time to the event is known. Both of these models can be adapted for use for the situation in 
which there are multiple types of events occurring (e.g., stroke vs. heart attack) or repeated events. 

 
The first step in the analysis is often a descriptive analysis that examines how many events occur in each 
time period.  Tables and figures are usually generated to get an overall sense of when the event is most 
likely to occur. The two most common approaches to these descriptive tables are the Kaplan-Meier 
(Kaplan & Meier, 1958) and the life-table approaches.  The Kaplan-Meier makes more sense if there are 
fewer possible time points to the event or the time to event is more discrete (i.e., fewer intervals known).  
If there are many time intervals, the Kaplan-Meier tables become unwieldy, so the life-table method, 
which groups event times into a set of intervals, is typically used.    
 
The focus of the tables is usually an examination of the estimated probability of survival based on the 
proportion of cases that have not experienced the event at each time point or interval.  In symbols, we 
could say: 
 

( ) ( )PrS t T t= >  
 
The S(t) is the survival probability, and Pr(T > t) is the probability that the event T occurs after some time 
interval or time point t.  Thus, if the event has not happened T comes after the time point under 
consideration at the moment.  
 
The probability of failure (i.e., probability that the event occurs) is simply the converse of the probability of 
survival, where F(t) is the probability failure has occurred up to time t: 
 

( ) ( )1F t S t= −  
 
The hazard probability is the probability that the event has occurred during a certain interval (or at a 
particular point in time) given that it has not occurred yet.  It is, therefore, a type of conditional probability. 
In symbols, we could say: 
 

( ) ( )Pr |
lim

0

t T t t T t
h t

tt

≤ < + ∆ ≥
=

∆∆ →
 

 
1 The data are right censored in this case. It is also possible for data to be left censored or interval censored, but I will not discuss these 
circumstances here. 
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The numerator of the right side of the equation is a conditional probability that the event T has occurred 
between some initial time point, t, and some later time point, t + ∆t.  ∆t represents some increment in 
time, which can be any amount. The right side of the | symbol represents "given that the event has not 
occurred before time t."  The limit (lim) is a way of indicating we are computing the probability as the time 
increment becomes incrementally small. So, the entire right side can be read as the probability that an 
event occurs in a certain time interval, regardless of its length, given that it has not already occurred to 
that point. 
 
We can also say the hazard probability is the probability of failure divided by the probability of survival: 
 

( ) ( )
( )

f t
h t

S t
=  

 
The hazard probability and the survival probability are opposite concepts and they are linked by a log 
transformation.   

( ) ( )logdh t S t
dt

=  
 

So, the hazard function is the derivative with respect to t of the log transformation of the survival function. 
In more general terms, as the probability of the event increases (hazard), the probability of survival 
decreases for any time interval. 
 
Kaplan-Meier Estimation Example 
To illustrate hazard and survival estimates, I'm going to use the example from Graham, Willet, and 
Singer (2012). This example comes from the Wisconsin Longitudinal Study and models the time until 
divorce for those who marry.  The event in this case is divorce, where the hazard represents the 
probability of divorce during a certain period and survival represents the probability of continued marriage 
up to and including the period considered.  There are 11 periods representing 4-year intervals each, so 
the time spans 44 years.  Data are censored because some couples may divorce after the 44 years. 
 
Below is SAS code for requesting Kaplan-Meier estimates of hazard and survival probabilities at each 
period (METHOD=KM).  METHOD=LT would produce life-table estimates, which are computed slightly 
differently.  The INTERVALS statement requests estimates for each of the 11 periods. The TIME 
PERIOD*Y(0); command specifies the variables used as the time variable, which is period here, and 
the variable used as the indicator of whether or not the event occurred, which is Y.  The value in 
parentheses, (0), indicates the value of the outcome that corresponds to censoring (i.e., the value 
representing a non-occurrence of the event). (Values appear in Table 11.1 in the Graham et al., 2012). 
 
proc lifetest data=person method=km plots=(s,h) 
 intervals = 1 2 3 4 5 6 7 8 9 10 11; 
  time period*y(0); 
  run; 
 
The LIFETEST Procedure 
                 Product-Limit Survival Estimates 
                                      Survival 
                                      Standard    Number   Number 
  period     Survival    Failure      Error       Failed     Left 
  0.0000       1.0000           0           0        0       7860 
  0.0000       0.9809      0.0191     0.00154      150       7710 
  1.0000       0.9487      0.0513     0.00249      403       7451 
  2.0000       0.9157      0.0843     0.00314      661       7167 
  3.0000       0.8912      0.1088     0.00352      851       6903 
  4.0000       0.8855      0.1145     0.00361      894       6656 
  5.0000       0.8831      0.1169     0.00364      911       6422 
  6.0000       0.8815      0.1185     0.00367      923       6302 
  7.0000       0.8786      0.1214     0.00371      943       6073 
  8.0000       0.8730      0.1270     0.00380      979       5655 
  9.0000       0.8655      0.1345     0.00394     1022       4973 
 10.0000       0.8630      0.1370     0.00399     1034       4141 
 11.0000*           .           .           .     1034         0 
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In SAS, the KM method does not generate the hazard probabilities (the life-table method does), but that 
could be computed for any interval by dividing the difference in failure by the survival. For example, for 
the 3rd period, there were 851 – 661 = 190 new divorces, and the increment in failure is .1088  - .0843 = 
.0245.  This gives a hazard for this period of: 

( ) ( )
( )

.0245 .0275

.8912
f t

h t
S t

= = = , 

which is within rounding error of the value in Table 11.1 in the Graham et al. chapter for this period. 
 
The PLOTS= request produced the following two plots.  The survivor function plot is a plot of the survival 
probabilities, or the probability of staying married over the 44 years.  The plot shows a decline in survival 
over time, but there is a steeper decline in the first 4 periods (16 years).  

 
 
 
The hazard function plot suggests that there is a considerably higher risk of divorce between the second 
and fourth periods (about 8 to 16 years after getting married). 
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Discrete Time Survival Analysis 
 
Discrete time survival analysis (Cox, 1972) is intended for analysis of the probability of an event 
occurring when the time variable is discretely measured. In other words, there are few periods to time 
measured and the exact time of the event is not known. For example, a study might survey respondents 
annually over 6 years and ask them about a particular event at each interview. In this case we often do 
not know the exact time of the event, but we know the event occurred between Years 2 and 3 or Years 4 
and 5 etc.  So, we have only 5 possible time periods within which the event may have occurred.  
 
Discrete time survival models can be tested using traditional logistic regression (but really based on a 
multinomial distribution), but several special steps must be taken to obtain the correct estimates that can 
be interpreted as survival estimates.  First, the data must be reconfigured into a person-period format 
(a.k.a., long format).  Second, dummy or indicator variables must be constructed to designate whether 
the event occurred during that period for each person.   
 
Discrete Time Survival Analysis Example 
An initial analysis can be conducted without predictors to obtain hazard estimates at each period.  To do 
this, a logistic model is tested using the person-period (long) format and entering in the list of dummy 
variables.  In the Wisconsin Longitudinal Study there were 11 periods, so 11 dummy variables (D1-D11) 
are constructed.  The odds ratios for each dummy estimate the hazard at each time point. The values 
closely approximate those obtained from the Kaplan-Meier procedure. 
 
proc logistic data=persper out=estimate; 
  title "Fitted initial hazard model with time indicators"; 
  model y(event='1') = D1-D11/noint; 
  run; 
 
The LOGISTIC Procedure 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
D1            1     -3.9396      0.0824     2283.6827        <.0001 
D2            1     -3.3827      0.0639     2799.9442        <.0001 
D3            1     -3.3243      0.0634     2752.0517        <.0001 
D4            1     -3.5927      0.0735     2386.7139        <.0001 
D5            1     -5.0421      0.1530     1086.1510        <.0001 
D6            1     -5.9343      0.2429      597.0848        <.0001 
D7            1     -6.2637      0.2889      469.9227        <.0001 
D8            1     -5.7159      0.2240      651.2799        <.0001 
D9            1     -5.0568      0.1672      914.7323        <.0001 
D10           1     -4.7506      0.1532      962.1048        <.0001 
D11           1     -5.8438      0.2891      408.6141        <.0001 
 
           Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
D1           0.019       0.017       0.023 
D2           0.034       0.030       0.038 
D3           0.036       0.032       0.041 
D4           0.028       0.024       0.032 
D5           0.006       0.005       0.009 
D6           0.003       0.002       0.004 
D7           0.002       0.001       0.003 
D8           0.003       0.002       0.005 
D9           0.006       0.005       0.009 
D10          0.009       0.006       0.012 
D11          0.003       0.002       0.005 
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One or more predictor variables can be included in the analysis to predict the probability of experiencing 
the event. In the WLS data, we can add an education variable (DEGREE) to see whether those who are 
more educated are more or less likely to get divorced. 
 
proc logistic data=persper out=estimate; 
  title "Table 3, Model B"; 
  model y(event='1') = D1-D11 degree / noint; 
  run; 
 
Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
D1            1     -3.8764      0.0831     2176.1222        <.0001 
D2            1     -3.3189      0.0648     2623.3324        <.0001 
D3            1     -3.2603      0.0643     2574.8627        <.0001 
D4            1     -3.5285      0.0743     2255.1477        <.0001 
D5            1     -4.9761      0.1534     1052.6065        <.0001 
D6            1     -5.8671      0.2431      582.4403        <.0001 
D7            1     -6.1969      0.2892      459.2988        <.0001 
D8            1     -5.6499      0.2242      634.8448        <.0001 
D9            1     -4.9919      0.1675      887.7818        <.0001 
D10           1     -4.6873      0.1535      932.2916        <.0001 
D11           1     -5.7907      0.2892      400.8479        <.0001 
degree        1     -0.5164      0.1057       23.8795        <.0001 
 
           Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
D1           0.021       0.018       0.024 
D2           0.036       0.032       0.041 
D3           0.038       0.034       0.044 
D4           0.029       0.025       0.034 
D5           0.007       0.005       0.009 
D6           0.003       0.002       0.005 
D7           0.002       0.001       0.004 
D8           0.004       0.002       0.005 
D9           0.007       0.005       0.009 
D10          0.009       0.007       0.012 
D11          0.003       0.002       0.005 
degree       0.597       0.485       0.734 
 
 
The results indicate that having a degree is negatively related to (B = -.5164, p < .0001) divorce. Those 
with higher education are less likely to get divorced.  The hazard ratio is interpreted like an odds ratio, 
and its value here (HR = .597) represents approximately 68% reduction in the likelihood of getting 
divorced (1/.597 = 1.68). 
 
SPSS 
The discrete survival model can be tested in SPSS using the LOGISTIC procedure, but the /noorigin 
subcommand is needed to test a model without the intercept.  
 
R 
In R, the glm function can be used with a + 0 term and intercept=FALSE. (I gave … instead of listing all 
of the dummies here).   
 
glm(y~d1 + d2 + … + d11 + 0, family=binomial(link="logit"), intercept=FALSE) 
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Cox Regression Survival Analysis 
 
Cox regression (Cox, 1972) is used for the circumstance in which there is information about the time until 
the event occurs in addition to information about whether or not the event occurred.  
 

( ) ( )
0

|
limi t

P t t t t
h t

t∆ →

≤ < + ∆ ≥
=

∆
 

 

 
The hazard function, h(t), is a representation of the risk or rate of the events occurrence within a certain 
interval. ∆t is defined in terms of an increment in continuous time that can be considered in ever 
decreasing quantities to a lower limit of 0, which the 

0
lim

t∆ →
 notation on the right of the equation refers to.  

As with the discrete hazard, the rate is conditional on the event having not previously occurred—that 
t≥ . 

 
The hazard, as defined above, is then modeled in a transformed linear regression equation: 
 

( ) ( )0 1 1exp ...i i k ikh t b x b xλ= +  
 
The λ0(t) is the intercept or baseline hazard and exp is the exponent function (constant e raised to some 
power).  The model can then be “linearized” with log transformation in into the following form: 
 

( ) ( )0 1 1log ...i i ik ikh t b t b x b x= + + +  
 
And this equation looks very much like the standard regression equation on the right-hand side.  
 
The Cox regression model is convenient for several reasons.  There is no underlying probability 
distribution of survival assumed by the model (it is considered "semiparametric").  Time values do not 
have to be exact, and Cox can produce good estimates of hazard probability even with relatively few or 
inexact time points (Allison, 1984; Thompson, 1977).  So, it remains a very flexible approach. 
 
Cox regression then proceeds very much like linear or logistic regression with information about overall 
model fit and whether predictors are significant.  Like logistic regression, the slope coefficients are not 
particularly meaningful because of the log transformation of the hazard.  So, results can also be 
expressed in terms of hazard ratios.  A hazard ratio represents the increased risk of the event occurring 
at any given time for each unit increase in the predictor.  Like odds ratios in logistic regression, a hazard 
ratio of 1.0 represents even odds or not increased or decreased risk.  Hazard ratios over 1.0 indicate 
increased risk, and hazard ratios below 1.0 indicate reduced risk. 

 
The analysis requires a variable for censoring (event or no event by the end of the study), a numeric 
variable for the time until the event occurs, and the analysis uses standard data format of one person per 
record (wide format). The individuals that do not experience the event are given a time score equal to the 
last possible time value.  
 
Cox Regression Example 
Cox models can be tested in SAS, SPSS, or R, and other general statistical software.  I tend to use SAS 
because it has more options for survival analysis.  Two special variables are needed for the analysis.  
The first variable is simply whether or not the event occurred, often referred to as the "censor" variable.  
The second variable is the time variable, representing time until the event occurs. For cases in which the 
event has not occurred by the end of the study, their values are set to the maximum time possible for the 
study.  If months are the time metric and the study ended after 24 months, individuals who did not 
participate in the study are given a value of 24.  
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Using the WLS data, we can estimate the risk of divorce for those with higher vs. lower education level. 
Here, the Cox regression treats the variable LENGTH (same as our PERIOD variable before) as a 
continuous time variable.  The TIES=EXACT option specifies one way of handling tied time-to-event 
values, which is preferable if available (Allison, 2010).  TIES=EFRON and TIES=EXACT tend to produce 
better estimates , in general, than the default (TIES=BRESLOW). 
 
proc phreg; 
  model length*censor(1)=degree / ties=exact; 
  baseline out=output1 covariates=values1 survival=surviv1 / nomean;  
  run; 
 
Model Fit Statistics 
                 Without           With 
Criterion     Covariates     Covariates 
 
-2 LOG L        9932.752       9905.413 
AIC             9932.752       9907.413 
SBC             9932.752       9912.354 
 
        Testing Global Null Hypothesis: BETA=0 
 
Test                 Chi-Square       DF     Pr > ChiSq 
 
Likelihood Ratio        27.3392        1         <.0001 
Score                   24.3562        1         <.0001 
Wald                    23.8321        1         <.0001 
 
               Analysis of Maximum Likelihood Estimates 
 
                    Parameter      Standard 
Parameter    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
 
degree        1      -0.51140       0.10476       23.8321        <.0001 
 
Parameter       Ratio    Label 
degree          0.600    received college degree (1=yes, 0=no) 
 
Results give a similar hazard ratio to that obtained with the discrete time survival model, indicating a 
significant effect of degree such that those with a college degree are about 67% (1/.60 = 1.67) less like to 
get divorced (HR = .60, p < .0001). 
 
SPSS 
Specify the above model in SPSS with length as the time to event variable and censor(0) specifying the 
event (opposite of SAS).  
 
Coxreg length with degree 
  /status censor(0). 
 
R 
The survival package is a convenient way to specify Cox regression in R. Create the censor 
variable such that 1 = censored and 2 = event. 
 
library(survival) 
coxmod <- coxph(Surv(length, censor) ~ degree, data = d) 
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Comments on Survival Analysis 
 
The results from the discrete time survival model and the Cox regression were quite similar, so why 
chose one over the other? With many time points (and, thus, fewer tied time values), the two approaches 
will give very similar results. With finer grained time intervals, the discrete survival estimates converge 
with the proportional hazard (Cox regression) results (Thompson, 1977).  Categorizing otherwise 
continuous information (e.g., exact days to the event are grouped into yearly intervals) is not advisable, 
however, because there is a loss of precision proportionate to the coarseness of the categorization. 
Interestingly, implementation of the analyses can produce results from the alternative method depending 
on the specifications. In SAS, for example, with PROC LOGISTIC, specifying the complementary log-log 
link, gives proportional hazards estimates (Cox regression) and specifying TIES=DISCRETE under 
PROC PHREG (Cox regression procedure) gives discrete time survival results.  The discrete method 
assumes the event for ties occur at the same time, but the Cox regression approach assumes that there 
is a true underlying ordering of the time of the event that is unknown.  
 
Both discrete and Cox regression produce hazard ratios and both can incorporate time varying and time 
invariant predictors.  For either method, interactions can also be incorporated to investigate whether the 
covariate has a differential effect at different periods.  So, with many time points there are few important 
differences and most researchers probably choose Cox regression, because it is somewhat more 
convenient (e.g.., dummy variables do not need to be computed). Cox regression does assume that the 
levels of the predictor have a similar (parallel) hazard over the time periods.  Thus if the hazard is plotted 
for two levels of a predictor variable (e.g., no degree vs. degree) the shape of the hazard lines should be 
approximately parallel.  This assumption can be addressed by incorporating interactions, however. With 
very few time points, it might be preferable to use discrete time survival, because Cox will likely become 
less accurate as the number of time intervals decreases (and, thus, number of ties increases).    
 
One can also examine competing risks when there is more than one type of event.  For example, one 
may want to compare heart attack with congestive heart failure. Methods also exist for repeated events 
(e.g., multiple heart attacks).   
 
The data circumstance that we have been considering with survival analysis is that of right censoring, 
where we do not know whether the outcome occurs after the study ends. Left censoring, in which some 
cases may have already experienced the event prior to the start of the study, is also a potential biasing 
issue.  Although left censoring is less often an issue, there are special analytic precautions that should 
be taken. Interval censoring can also occur, a type of right and left censoring together. Typically this 
occurs in a panel study with regular intervals when the event occurs between the intervals but the 
precise timing of the event is unknown.  Most often researchers will analyze these data with the discrete 
time survival approach.  When there are irregular intervals more complex methods may be needed (e.g., 
J-S. Kim, 2003).   
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