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Missing Data Analysis with Binary and Ordinal Outcomes 
 
Missing Data Concepts 
MAR and MCAR. A distinction of the type of missing data was made by Rubin (1976; Little, 1995), 
who classified missing values as missing at random (MAR), missing completely at random 
(MCAR), or neither. Both MAR and MCAR require that the true values of the variable with missing 
values be unrelated to whether or not a person has missing values on that variable. For example, if 
those with lower incomes are more likely to have missing values on an income question, the data 
cannot be MAR or MCAR. The difference between MAR and MCAR is whether or not other 
variables in the data set are associated with whether or not someone has missing values on a 
particular variable. For example, are older people more likely to refuse to respond to an income 
question? The term “missing at random” is confusing because values are not really missing at 
random—missingness seems to depend on some of the variables in the data set. 
 
Determining whether missing values are MAR or MCAR. Although univariate or multivariate tests 
(Dixon, 1988; Little, 1988) can be conducted to investigate whether any variables in the data set 
are related to the probability of missingness on a particular variable, such tests cannot be definitive 
for a variety of reasons (Enders, 2022), including insufficient power, and could lead one to a false 
sense of security.1 And for modern missing data approaches, meeting the MAR rather than the 
MCAR assumption is what is crucial. Schafer and Graham (2002) state: "When missingness is 
beyond the researcher's control, its distribution is unknown and MAR is only an assumption. In 
general, there is no way to test whether MAR holds in a data set, except by obtaining follow-up 
data from nonrespondents or by imposing an unverifiable model." (p. 152). One may have to 
provide a theoretical argument that missingness is not associated with the variable or rely on 
information in the literature. 
 
In longitudinal studies, it may be useful to distinguish between attrition and intermittent missingness 
patterns in addition to missingness that occurs within a particular time point (Little, 1995; Newsom, 
2024). An attrition or dropout pattern (sometimes called "monotone") occurs when an individual 
discontinues participation in the study after a certain time point. An intermittent missing data 
pattern (or nonmonontonic) in which values are missing any particular time point but are present at 
least once again (including missing values for just particular variables).2 The missing data pattern 
does not necessarily imply anything about whether the MAR (or MCAR) assumption has been met 
or not. Attrition patterns, however, deserve greater suspicion that the variable of interest may be 
related to the probability of missingness, and therefore not MAR, because health and motivational 
factors are known to be a factor in tendency to drop out of a study. With longitudinal data, however, 
analyses can be used to explore this suspicion by examining whether missingness is associated 
with the value of the variable by examining whether the variable at Time 1 (i.e., with complete data) 
is associated with the missingness for that variable at Time 2 (Little, 1995). 
 
General Missing Data Remedies 
There are a variety of missing data imputation approaches, but most of them are older 
approaches that produce poor estimates (e.g., mean imputation; Enders, 2022). I highlight 
listwise deletion, because it is the most common and the default for nearly all analysis 
procedures in nearly all statistical packages. 

 
1 The Little test is provided in the SPSS missing data module and Mplus, and Craig Ender's has a SAS 
macro http://www.appliedmissingdata.com/macro-programs.html. 
2 If a participant did not complete the last wave of the study, it may be impossible to classify that individual as belonging to an intermittent 
or attrition pattern. 
 

http://www.appliedmissingdata.com/macro-programs.html
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Listwise Deletion. Listwise deletion means that complete data on each case is required, and 
any individual who has missing information on any variable is eliminated. For example, 
 

 
 

j Yij X1ij X2ij 

1 1 10 8 8 
2 1 . 9 . 
3 1 1 5 5 
4 2 3 . 5 
5 2 7 8 8 
6 2 10 8 . 

 

With listwise deletion, complete data are required on all variables in the analysis—any cases with 
missing values on one or more of the variables was eliminated from the analysis. In the example 
above, only cases 1, 3, and 5 are used in the analysis with listwise deletion. In repeated 
measures (and growth curve) analysis, each time point (rather that case) must have complete 
data. Listwise deletion reduces the sample size, adversely impacting significance tests, and will 
lead to biases in estimates unless data are MCAR (e.g., Enders & Bandalos, 2004; Kim & Curry, 
1977). 
 
Other conventional approaches. There are a number of other approaches to data analysis with 
incomplete data shown to produced biased estimated or significance tests. Mean imputation use 
the average from the sample (or group mean in multilevel analysis) to replace missing values on a 
variable. Mean substitution generally reduces the variance of variables and therefore leads to 
underestimate of standard errors (Enders & Bandalos, 2004; Schafer & Schenker, 2000). Pairwise 
deletion is a method of handling data sometimes an option available with OLS regression 
procedures (or multilevel procedures). With pairwise deletion, a covariance (or correlation) matrix is 
computed where each element is based on the full number of cases with complete data for each 
pair of variables. The attempt is to maximize sample size by not requiring complete data on all 
variables in the model. This approach can lead to serious problems and assumes data are MCAR 
(Little, 1992). Last observation carried forward uses the most recent value obtained for a 
participant in a longitudinal study. Although sometimes thought to be a conservative approach, last 
observation can lead to biases in either direction (Molenberghs & Kenward, 2007). Hot-deck 
imputation replaces values with values from similar other cases, which can lead to substantial 
biases in regression analysis (Schafer & Graham, 2002). 
 
Modern Missing Data Methods. Modern approaches, in particular multiple imputation (MI; Rubin, 
1987) and full maximum likelihood (Dempster, Laird, & Rubin, 1977), which uses a structural 
modeling approach), produce superior estimates compared with listwise deletion and the other 
conventional methods mentioned above as long as data are at least MAR (Enders, 2022; Schafer 
& Graham, 2002). Although these missing data approaches have been shown repeatedly to be less 
biased and more powerful, they often may not be a dramatic improvement over the default analysis 
approach using listwise deletion when the amount of missing data is small (perhaps less than 10% 
of the sample missing if listwise was used; see results of Arbuckle, 1996, for instance). The ease 
with which they can now be employed, however, suggests there is little cost in likely gain in 
accuracy by using them more routinely. 
 
The standard multiple imputation approach requires an initial step in which multiple data sets are 
imputed with some degree of uncertainty built into the imputed estimates. Common 
recommendations are for approximately 10 to 20 imputed data sets (Graham, Olchowski & 
Gilreath, 2007; 20 seems to be the most commonly suggested number currently), but Enders 
(2022) argues that more (e.g., 100) is not too computationally intensive and will not hurt. The 
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second step combines (or "pools") the analyses from separate data sets and uses variability across 
the multiple imputations to better estimate standard errors.  
Full maximum likelihood generally refers to missing data estimation that is part of testing a 
structural equation model in software such as Mplus and the lavaan R package. As part of these 
models, the missing data estimation is employed seamlessly in a single step when specifying a 
model.  
 
Recent work illustrates that including potential causes or correlates of the variables with missing 
values (known as “auxiliary” variables) as part of the analysis has important advantages when data 
are only MAR, particularly when the association of those with the variable with missing values is 
high (e.g., > .4) and when the amount of missing data is large (e.g., > 25%; Collins, Schafer, & 
Cam, 2001; Graham, 2003). Both multiple imputation and full information maximum likelihood can 
incorporate auxiliary variables. Because inclusion of auxiliary variables in the analyses increases 
the likelihood of meeting the MAR assumption and can reduce the bias when data are MNAR, it is 
likely preferable to use modern missing data methods with auxiliary variables over default listwise 
deletion even if there is no way to know whether the MAR assumption is valid or not. 
 
Missing Data with Categorical Data Analysis 
For most analyses that we have covered in the present class, the primary option for handling 
missing data is multiple imputation. Multiple imputation with categorical variables is possible in a 
number of different software packages, such as mice (van Buuren & Groothuis-Oudshoorn, 2011) 
mix (Schafer & Ripley, 2024) R packages or the free standalone software Blimp (Enders & Keller, 
2023).3 The multiple imputation process has two general steps. In the first, multiple data sets are 
generated, each with different values filling in for the missing values. The replaced values are 
generated in various ways depending on the program and researcher’s choices, but mostly based 
on a regression-based process that predicts values using other variables and adds random 
variation. One common method for this is “factored regression,” as it is called with continuous 
variables (Lipsitz, & Ibrahim, 1996) or “sequentially specification,” as it is called with categorical 
variables (Lüdtke et al., 2020), that estimates a multivariate distribution with a product of several 
conditional univariate distributions, each using decreasing subsets of the conditional univariate 
variable distributions. In the second step, the planned analysis (e.g., logistic regression) is 
conducted in each data set and then all of the results are combined, a step that requires special 
features.  
 
With missing categorical values, sequential probit-based regressions are used for the estimation of 
missing values at each imputation with values chosen through a Bayesian Markov chain Monte 
Carlo (MCMC) process (see Enders, 2022 for a more detailed description). The probit regressions 
enable random draws using the continuous latent y* distribution. The sequential specification, 
because used separately for each missing value, can be applied when there is a mix of binary and 
continuous variables that need imputation.   
 
Some models, such as IRT psychometric analyses or latent class models can be tested in software 
that incorporates missing data as part of estimation process. With continuous variables, this missing 
data estimation is known as full information maximum likelihood (FIML). The FIML process does not 
impute any values but instead fits the model and derives the parameter estimates (e.g., loadings) 
using information for each case. With categorical variables, different estimators are possible, with 
diagonal weighted least squares (the WLSMV estimation option in Mplus and the lavaan R 
package). This approach is not entirely full information and therefore requires a stricter missing data 
assumption of MCAR, whereas the full information methods only require MAR. Another option is 

 
3 SPSS has a separate module for missing data analysis that will do multiple imputation, but it is a separate add-on for an additional price.  
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marginal maximum likelihood which is a full information estimator. Bayesian estimation within 
structural equation modeling or latent class modeling software is expected to perform more like a full 
information method or multiple imputation, assuming the less strict MAR mechanism. 
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