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Latent Transition Analysis 
 
Latent transition analysis (LTA) is the extension of latent class analysis to longitudinal data. A variety of 
model variations are possible to explore specific longitudinal research questions. 
 
Basic Latent Transition Analyses 
Latent transition models can be formulated in one of two ways, repeated-measures latent class analysis 
(RMLCA) or latent transition analysis.  In both the latent class model is specified for each time point, 
based on prior analyses at each time point to determine estimated number of latent classes. The RMCLA 
model examines transitions among estimated classes across two or more time points without direction 
prediction, and so is analogous to a matched pairs McNemar or Stuart-Maxwell (marginal homogeneity) 
test but using estimated latent classes. Latent transitional models are more common and involve a 
directional prediction of the subsequent time point by the prior time point.  This is an autoregressive 
model in which the predictive portion of the model is a logistic (if there are only two classes) or a 
multinomial logistic model (for three or more classes). The figure below depicts a latent transition model 
with four indicators. τjc as the response probability and α2|1 as the intercept/threshold for the multinomial 
logistic.  
 

 
 

Newsom (2015), p. 276 
 
In addition to the response probabilities, transition probabilities are estimated represents the probability 
that a case will have class membership in one of the classes at the subsequent time point given 
class membership at the prior time point. This is a conditional probability and is one for each category at 
the subsequent time point given initial membership in each of the categories at the initial timepoint.  For 
example, if there are three classes of patients based on their attitudes toward annual physical check-ups 
(“opposed,” “interested but infrequent” and “compliant”), then probabilities are computed for predicted 
membership in each of these categories at Time 2 given which particular class the patient was a 
membership in at Time 1 (3 × 3 = 9 transitions).  
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The transition probabilities are often organized into a matrix (Collins & Lanza, 2010) in which the rows 
are classes at initial time point, t, and columns classes at the later time point t + 1. For example,  
 

Time 1 Time 2 
 Opposed Interested Compliant 
Opposed  2 1| 1 1ˆc cπ = =  2 2| 1 1ˆc cπ = =  2 3| 1 1ˆc cπ = =  
Interested 2 1| 1 2ˆc cπ = =  2 2| 1 2ˆc cπ = =  2 3| 1 2ˆc cπ = =  
Compliant 2 1| 1 3ˆc cπ = =  2 2| 1 3ˆc cπ = =  2 3| 1 3ˆc cπ = =  

 
Given the assumption that all class memberships are mutually exclusive and mutually exhaustive, the 
conditional probabilities for transitions out of a particular class at Time 1 should sum to 1.0 (i.e., sum of 
row values in the above matrix). It is common to require that the response probabilities be equal over 
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time to ensure that the contribution of one of the indicators (e.g., “I get nervous around doctors”) to the 
probable class membership is equally important at both time points.1 Predictive models also examine the 
logistic or multinomial regression regression coefficients from which odds ratios can be computed (e.g., 
odds or membership in the compliant group if initially I the interested group). As with multinomial 
regression, if there are more than two classes, a referent group must be chosen for the outcome latent 
class variable. 
  
LTA with More Time Points 
More time points can be investigated in latent transition models (in which the models may be referred to 
as “Markov chain models”).  With more time points, several interesting specific hypotheses may be of 
interest. The idea of stage sequential modeling (Collins & Wugalter, 1992; Lanza, 2003) investigates 
certain patterns of class membership (e.g., stages of change in health behavior research, or Piagetian 
developmental stages). The concept of the stage sequence is that an individual has a specific class 
membership pattern. For example, in a set of six consecutive binary latent classes, one individual’s class 
membership might be 1, 2, 2, 1,1, 1. This individual moves from Class 1 to Class 2 at the second 
occasion but then moves back to Class 1 at the fourth occasion. The mover–stayer model is a specific 
type of the general state sequential model that classifies individuals in terms of their transition patterns 
over time (van de Pol & Langeheine, 1989). “Movers” are individuals who change from one state to 
another, whereas “stayers” are individuals who do not change. 
 
 
There are several potentially important advantages of latent transition models, including the ability to 
account for measurement error over time, the ability to investigate and ensure measurement invariance 
over time, and a data reduction function for examine change in qualitative states in which the complexity 
of many variables is reduced by estimating a smaller number of underlying latent classes (Lanza, Patrick, 
& Maggs, 2010). There also are a number of challenges with estimating latent class and latent transition 
analyses (Nylund-Gibson & Choi, 2018). Estimation of latent transition models with several time points 
becomes increasingly computationally complex. With binary indicators, the number of contingency values 
increases exponentially (Collins & Lanza, 2010). For example, with just two time points and five 
indicators there are 22×5 = 1,024 elements in a crosstabulation table of all of the variables. With three 
time points, this expands to 23×5 = 32,768. This poses some potentially very significant computational 
challenges! In general, more complex models will be more likely to have difficulty with convergence and 
can produce results from local minima.  It is important to use multiple start values (usually randomly 
generated by the software) and retest models by increasing the number of start values. Many models 
may require constraints in order to obtain convergence.   
 
Growth Mixture Models 
Although they are not latent transition models per se, another approach to longitudinal modeling that 
utilizes latent class analysis is the growth mixture model (Muthén & Shedden, 1999; Nagin, 1999). 
Growth mixture models involve a latent class analysis of growth curve model parameters. Growth curve 
models obtain estimates of initial values and slopes for change over three or more time points. Growth 
mixture models estimate classes for these parameters. For example, a growth mixture model might find 
that there are three classes of individual change in social support over time—those who start out with a 
high amount of support who stay high over time, those who start out with a low amount of support and 
increase over time, and those who start out with a low about of support and stay low over time. For good 
didactic illustrations, see Ram and Grimm (2009) and Infurna and Grimm (2018). 
 
 
 

 
1 It is possible to relax this assumption, in which the classes would have different meanings at each time point, and it may even be of interest to 
have a different number of classes at each time point. Such models would deviate from the usual approach to measurement invariance, but they 
are potentially useful to examine changes among qualitatively different classes over time.  
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Examples 
Data for this example come from the Health and Retirement Study (HRS). In a recent paper on 
multimorbidity,2 we examined latent classes estimated for eight chronic health conditions (e.g., heart 
disease, stroke, cancer). Prior analyses led us to conclude there were three latent classes (roughly 
labeled, “minimal disease, ”cardiovascular-musculoskeletal,” “”cardiovascular-musculoskeletal-mental”).  
We then examined latent transitions across 16 years.  
 
R 
There are not many options in R for conducting latent transition analysis. Below, I use the LMest 
package (Bartolucci, Pandolfi, Pennoni, 2017) that estimates “Generalized Latent Markov Models”.   Data 
must be transformed to long format and my initial set of commands does that.  On the lmest function, k 
= is the number of classes extracted, modBasic = 1 is for “time-homogeneous transition matrices” (for 
constraining transition probabilities across waves to be equal when there are more than 2), start = 1 
uses random start values, maxit = 5000 increases the default maximum iterations from 1000 to 5000, 
and seed = sets a random seed for the start value generator for replication purposes. Note that the 
output does not match the SAS PROC LTA results very closely.  
 
> #transform wide data format to long data format 
> longd <- reshape(d, idvar="id", 
+                   varying=list(c("bp98","bp14"), 
+                   c("diab98","diab14"), 
+                   c("cancr98","cancr14"), 
+                  c("lung98","lung14"), 
+                   c("hrt98","hrt14"), 
+                    c("strk98","strk14"), 
+                    c("arth98","arth14"), 
+                     c("depression98","depression14"), 
+                    c("time1","time2")), 
+                   v.names=c("bp","diab","cancr","lung","hrt","strk", 
+                             "arth","depression","time"),direction="long",sep="") 
 
> library(LMest) 
> model <- lmest(index = c("id","time"), 
+               k = 3, 
+               data = longd, 
+               modBasic = 1, 
+               start = 1,  
+               maxit = 5000, 
+               seed = 052421) 
 
 
> model 
 
Basic Latent Markov model 
Call: 
lmest(data = longd, index = c("id", "time"), k = 3,  
    start = 1, modBasic = 1, maxit = 5000, seed = 52421) 
 
Available objects: 
 [1] "lk"       "piv"      "Pi"       "Psi"      "np"       "k"        "aic"      "bic"      "lkv"      
"V"        "n"        "TT"       "modBasic" "Lk"       "Bic"      "Aic"      "call"     "data"     
 
Convergence info: 
     LogLik np k    AIC      BIC     n TT 
  -147177.5 56 3 294467 294945.8 38183  2 
> summary(model) 
Call: 
lmest(data = longd, index = c("id", "time"), k = 3,  
    start = 1, modBasic = 1, maxit = 5000, seed = 52421) 
 
Coefficients: 
 
Initial probabilities: 
     est_piv 
[1,]  0.1559 
[2,]  0.3121 
[3,]  0.5319 
 

 
2 Quiñones, A.R., Newsom, J.T., Elman, M.R., Markwardt, S., Nagel, C.L., Dorr, D.A., Allore, H.G., and Botoseneanu, A. (2021). Racial and 
ethnic differences in multimorbidity changes over time. Medical Care, 59(5), 402-409. doi: 10.1097/MLR.0000000000001527.  
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Transition probabilities: 
     state 
state      1      2      3 
    1 0.9786 0.0000 0.0214 
    2 0.2737 0.7263 0.0000 
    3 0.1652 0.3099 0.5250 
 
Conditional response probabilities: 
, , item = 1 
 
        state 
category      1 2      3 
       0 0.0000 0 0.0000 
       1 0.1554 0 0.9912 
       2 0.8446 1 0.0088 
 
, , item = 2 
 
        state 
category      1      2      3 
       0 0.0000 0.0000 0.0000 
       1 0.6002 0.7713 0.9233 
       2 0.3998 0.2287 0.0767 
 
, , item = 3 
        state 
category     1      2      3 
       0 0.000 0.0000 0.0000 
       1 0.771 0.8796 0.8989 
       2 0.229 0.1204 0.1011 
 
, , item = 4 
        state 
category      1      2      3 
       0 0.0000 0.0000 0.0000 
       1 0.6905 0.9601 0.9417 
       2 0.3095 0.0399 0.0583 
 
, , item = 5 
        state 
category      1      2     3 
       0 0.0000 0.0000 0.000 
       1 0.3576 0.8329 0.888 
       2 0.6424 0.1671 0.112 
 
, , item = 6 
        state 
category     1      2      3 
       0 0.000 0.0000 0.0000 
       1 0.773 0.9488 0.9803 
       2 0.227 0.0512 0.0197 
 
, , item = 7 
        state 
category      1      2     3 
       0 0.0000 0.0000 0.000 
       1 0.1194 0.4552 0.564 
       2 0.8806 0.5448 0.436 
 
, , item = 8 
        state 
category     1      2      3 
       0 0.000 0.0000 0.0000 
       1 0.661 0.8851 0.8967 
       2 0.339 0.1149 0.1033 

 
SAS 
The PROC LTA macro developed by Lanza and colleagues3 to estimate transition probabilities. See 
notes below in comments section. 
 
/*proc lta requires 1, 2 values, seed is a random seed for random starting values, 
nstatus is the number of latent classes, assumed to be the same at both time points, 
ntimes is the  number of time points, items are the indicator variables and must be 
the same number of items at each time point listed in the same order, and categories 
is the number of response categories for each variable (assumed to be the same across 

 
3 PROC LCA & PROC LTA (Version 1.3.2) [Software]. (2015). University Park: The Methodology Center, Penn State. Retrieved from 
http://methodology.psu.edu   
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time),  meaurement times constraints response probabilities to be invariant over 
time*/ 
 
PROC LTA; 
NSTATUS 3; 
NTIMES 2; 
ITEMS bp98 diab98 cancr98 lung98 hrt98 strk98 arth98 depression98 
 bp14 diab14 cancr14 lung14 hrt14 strk14 arth14 depression14; 
CATEGORIES 2 2 2 2 2 2 2 2; 
seed 052421; 
measurement times; 
run; 
 
 
 
              Data Summary, Model Information, and Fit Statistics (EM Algorithm) 
 
 
 
Number of subjects in dataset:       38183 
Number of subjects in analysis:      38183 
 
Number of measurement items per time:    8 
Response categories per item:            2 2 2 2 2 2 2 2 
Number of occasions (times):             2 
Number of groups in the data:            1 
Number of latent statuses:               3 
 
Rho starting values were randomly generated (seed = 52421). 
 
Parameter restrictions: Rho (measurement) parameters were constrained to be equal across time. 
 
The model converged in 899 iterations. 
 
Maximum number of iterations: 5000 
Convergence method: maximum absolute deviation (MAD) 
Convergence criterion:  0.000001000 
 
============================================= 
Fit statistics: 
============================================= 
 
Log-likelihood:   -147520.88 
G-squared:          18571.46 
AIC:                18635.46 
BIC:                18909.07 
Degrees of freedom:    65503 
 
Test for MCAR 
      Log-likelihood:   -138235.15 
      G-squared:           9934.60 
      Degrees of freedom:   578738 
 
 
                            Parameter Estimates 
 
Delta estimates (status membership probabilities): 
Status:                    1          2          3 
  Time  1     :       0.4548     0.3344     0.2109 
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  Time  2     :       0.2694     0.2711     0.4595 
 
Tau estimates (transition probabilities): 
Time   1 latent status (rows) by 
    Time   2 latent status (columns) 
                           1          2          3 
        1     :       0.5129     0.2281     0.2590 
        2     :       0.0000     0.5006     0.4994 
        3     :       0.1717     0.0000     0.8283 
 
 
Rho estimates (item-response probabilities): 
(All times) 
  Response category:  1: 
Status:                    1          2          3 
  bp98        :       0.6393     0.5837     0.0806 
  diab98      :       0.9030     0.9210     0.5446 
  cancr98     :       0.9148     0.8701     0.7962 
  lung98      :       0.9590     0.9130     0.7910 
  hrt98       :       0.8949     0.8393     0.4851 
  strk98      :       0.9763     0.9748     0.8057 
  arth98      :       0.9980     0.0001     0.2022 
  depression98:       0.9149     0.8601     0.7318 
 
  Response category:  2: 
Status:                    1          2          3 
  bp98        :       0.3607     0.4163     0.9194 
  diab98      :       0.0970     0.0790     0.4554 
  cancr98     :       0.0852     0.1299     0.2038 
  lung98      :       0.0410     0.0870     0.2090 
  hrt98       :       0.1051     0.1607     0.5149 
  strk98      :       0.0237     0.0252     0.1943 
  arth98      :       0.0020     0.9999     0.7978 
  depression98:       0.0851     0.1399     0.2682 
 
I have not illustrated any here, but a few structural equation modeling packages, such as Mplus or Mx, 
can estimate latent transition models as well. 
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