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Loglinear Models 
Loglinear models are an alternative method of analyzing contingency tables, with the ability to test many 
of the same hypotheses we have discussed up to this point. It is different framework for conceptualizing 
categorical data that has many advantages because of its flexibility for constructing tests for more 
complex designs and ordinal variables.  
 
Natural Logarithms 
Before discussing loglinear models, we will need to review a few basic principles about logarithms, 
because natural log transformations are integral to the approach. Recall that the natural logarithm is 
complementary or inverse function to the exponential transformations.  Though there are a several 
variants of the logarithm function, we will focus only on the natural logarithm which is the inverse of the 
exponent function. The natural logarithm is denoted either as loge (log base e), ln, or in many statistical 
texts just log. I am not fond of just using “log” because of the potential ambiguity, but to remain consistent 
with your readings, I will always be referring to the natural logarithm (ln) when using log below.  The 
exponential function indicated by e (and also by exp) raises the constant named after the Swiss 
mathematician Leonhard Euler, 2.71828e ≈ , to some power, say x. In general, we could state that log xe x=
.  If x = 4.5, then ex = exp(x) = e4.5 = 90.017. The natural log reverses this transformation, loge(90.017) = 
log(90.017) = 4.5. The natural log of an integer will always be a positive number, and the log of a decimal 
less than 1 will always be negative.  The log of a negative number is undefined.  
 
There are a couple of special algebraic rules that will be used in discussing loglinear models. The log of 
a product is equal to the sum of the logs of each individual value or variable (product rule). 
 

( ) ( ) ( )log log logxy x y= +   
 
Incidentally, this analysis is called loglinear, because of this additive rule. The addition of terms on the 
right hand side of the equation implies a linear combination of the terms. In another rule, the log of a ratio 
is equal to the difference of the logs of each individual value or variable (quotient rule) in which the log of 
the numerator is subtracted from the log of the denominator.  
 

( ) ( )log log logx x y
y

 
= − 

 
  

 
We may also see the power rule,  
 

( ) ( )log logyx y x=   
 
Odds, Log-Odds and Odds Ratios Revisited 
Recall that the odds of an event occurring involves the ratio of the frequency of the event occurring to the 
frequency of the event not occurring (or the alternative occurring).  Using the Quinnipiac poll data1 from 
the “Analysis of Contingency Tables” handout, we had the following frequencies 
 
  

 Trump Biden  
Party affiliated 338 363 701 
Independent 125 156 281 
 463 519 982 

  

                                                           
1 These results are based on a national Quinnipiac University poll from Oct 4-7, 2019, https://poll.qu.edu/national/release-
detail?ReleaseID=3643. Methodological details are here https://poll.qu.edu/images/polling/us/us10082019_demos_uljv62.pdf/. 

https://poll.qu.edu/national/release-detail?ReleaseID=3643
https://poll.qu.edu/national/release-detail?ReleaseID=3643
https://poll.qu.edu/images/polling/us/us10082019_demos_uljv62.pdf/
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The odds that party affiliated voters favored Biden over Trump was 12 11/ 363 / 338 1.07n n = = .  And we get 
the same result if we use the conditional proportions,2 ( ) ( )1|2 1|1/ 363 / 701 / 338 / 701 .517 / .482 1.07p p = = =  
Loglinear models use log transformations of counts and proportions as the basis for the analysis, so it is 
useful to consider log transformation of the odds—the log odds or logit. The log odds for party affiliates 
favoring Biden over Trump was ( ) ( ) ( )12 11log / log 363 / 338 log 1.074 .071n n = = = , which has an equivalent result 
if conditional proportions are used, ( ) ( ) ( )1|2 1|1log / log .517 / .482 log 1.074 .071p p = = = . If the odds for 
independents favoring Biden are compared to the odds of party affiliates favoring Biden, we have the 
odds ratio, of course,  
 

156 /125 1.248 1.162
363 / 338 1.074

θ = = =   

 
which means that the odds that a respondent supported Biden if the voter was independent was 1.162 
times the odds of supporting Biden if the voter was party affiliated. The log of the odds ratio, log(θ) = 
log(1.162) = .150 is the logistic regression coefficient, β.  Note that we could also arrive at this value by 
using the quotient rule (within rounding), which is the difference in logits, 
 

( ) ( )156 /125log log 156 /125 log 363 / 338 .222 .071 .151
363 / 338

  = − = − = 
 

   

 
Using the exponential function of β, we get the odds ratio again, eβ = e.151 = 1.162.  If the log of the odds 
ratio is 0, then the odds ratio is one, because e0 = 1.0. 
 
The Loglinear Model 
We will begin by assuming nominal categories, but later we will see how the loglinear model can be 
extended to ordinal variables.  Your text introduces a new notation for expected frequencies here. 
Instead of using Eij for the expected count in a cell, the Greek letter “mu” is used, µij.  One way to express 
the computation for the expected frequencies for the Pearson χ2 would be µij = nπi+π+j. The loglinear 
model expresses everything in terms of natural logs, so the log of the expected frequency for one cell is 
log(µij) = log(nπi+π+j). Using the product rule, we can see how one basic loglinear model, the 
independence model, partitions the expected frequencies for a cell into three components.  
 

( ) ( ) ( ) ( )log log ln lnij i jnµ π π+ += + +   
 
Above, µij is the expected count for one cell, n is the total sample size, πi+ is the corresponding marginal 
row proportion, and π+j is the corresponding column marginal proportion. The equation is true if X and Y 
are independent.  In practice, we would use the observed marginal frequencies, pi+ and p+j, to compute 
the expected frequency of a cell rather than known or population values as suggested by the use of π. 
Each natural log term is often re-expressed as a set of parameters, using the Greek symbol λ (“lambda”).  
 

( )log X Y
ij i jµ λ λ λ= + +  

 
The superscript is not an exponent, but just denotes that the parameter pertains to the X (row) or the Y 
(column) variable in the contingency table. Each one of the subscripts, i and j, refer to a particular row or 
column.  Each lambda represents each log term in the previous equation, ( )log nλ = , ( )logX

i iλ π += , and

( )logY
j jλ π +=  .  

 
                                                           
2 Using the cell/total proportions, nij/n++, produces the same number as long a common denominator is used.  



Newsom   
Psy 525/625 Categorical Data Analysis, Spring 2021  3 
 
As an example, we can compute the log of the expected frequency for the first cell in the Quinnipiac poll 
table,  
 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

log log log log

log 982 log 701/ 982 log 463 / 982

6.890 .337 .752 5.801

ij i jnµ π π+ += + +

+ +

= + − + − =

  

 
This value does not mean too much by itself, but if we use the exponent function to undo the log, the 
e5.801 = 330.630.  Within rounding, this value happens to be equal to the expected value using the 
expected value formula for the Pearson χ2, which before we computed as Eij = (701*463)/982 = 330.512.  
 
Two-Way Contingency Table Tests 
The independence model holds true under the null hypothesis that the conditional proportions in each 
row are equal (i.e., that the odds ratio is 1.0 and the two variables are independent). If the null hypothesis 
is not true, then there must be something added to the right hand side of the equation that would 
produce a value larger or smaller than log(µij). The extra term (the association term)3 on the righthand 
side of the equation, XY

ijλ , represents the degree of non-independence, which quantifies the departure of 
the observed frequencies from the expected frequencies.  
 

( )log X Y XY
ij i j ijµ λ λ λ λ= + + +  

 
Adding this last term to the model produces the so-called saturated model, in which there is the same 
number of parameters as there are observed frequencies (i.e., the fit is perfect). Testing hypotheses in 
loglinear modeling involves the comparison of a model with more parameters to a model with fewer 
parameters.  Although one could construct other tests by comparing the saturated model to a model that 
drops another parameter (e.g., 2

iλ ), nearly always the interest is with the comparison of the saturated 
and the independence model in 2 × 2 contingency tables.  Although a Pearson χ2 could also be used, 
loglinear models are most often tested with the likelihood ratio test with df = (I-1)(J-1). 
 

2 2 logI J ij
iji j

ij

n
G n

µ

 
=   

 
∑ ∑   

 
The loglinear model for the 2 × 2 contingency table is easily extended to I × J tables. For these larger 
designs, the table is usually divided up into a set of 2 × 2 subtables. For comparisons within larger 
tables, odds need to be defined as a comparison to a referent group. The odds ratios in the 2 × 2 case 
were based on odds of ni1 relative to ni2. If there were three columns, we could choose any column as a 
referent. Usually, the referent is the last column (or sometimes the first). For example, with 3 × 3 table, 
we could compute the log odds ratio comparing the third and the first columns from the third and the 
second rows, ( ) ( )33 31 23 21log / / /n n n n   .  In general, there are J -1 non-redundant comparisons needed to 
capture all of the differences.  To identify the model, we are placing scaling (or normalization) constraints  
on the parameters that are usually in the form of dummy codes, just as with g -1 dummy codes used for 
categorical predictors in a regression model.4  
 
Technically the independence model in the 2 × 2 case has parameters for each row and each column, 

( ) 1 2 1 2log X X Y Y
ijµ λ λ λ λ λ= + + + +  and the referent row (e.g., the last) is removed (set to 0), so the 

                                                           
3 This term is also commonly referred to as the interaction term, because the value of Y depends on the value of X.  I think the analogy to the 
factorial ANOVA is potentially confusing, however, because we have a circumstance with only two variables rather than three variables.  
4 Alternatively, the sum of the parameters for cell pairs could be constrained to be 0, which is an effect coding scaling approach. The dummy 
coding approach seems to be the most common. 
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independence model for the 2 × 2 case is just ( ) 1 1log X Y

ijµ λ λ λ= + + . In the 3 × 3 case the independence 

model is ( ) 1 2 3 1 2 3log X X X Y Y Y
ijµ λ λ λ λ λ λ λ= + + + + + + , but a chosen referent category is dropped, so it becomes

( ) 1 2 1 2log X X Y Y
ijµ λ λ λ λ λ= + + + + . The saturated models for each case includes (I-1)(J-1) association terms 

that are also dropped.   
 
Loglinear models produce coefficients for one of the effects in the model.  The λXY association term 
provides information about the X-Y relationship and is equal to a logistic regression with Y regressed on 
X. An odds ratio can be derived from any of the coefficients by using the exponential transformation, 
where XYbe = OR for X predicting Y.  
 
Three-Way Contingency Table Tests 
The loglinear concepts presented above for two-way tables can be expanded to three-way tables, 
whether for the simpler 2 × 2 × 2 case or I × J × K tables. The saturated loglinear model for three-way 
tables is  
 

( )log X Y Z XY XZ YZ XYZ
ijk i j jk ij ik jk ijkµ λ λ λ λ λ λ λ λ= + + + + + + +    

 
Superscripts X, Y, and Z represent the three categorical variables, with their levels indexed by i, j, and k 
subscripts, respectively. The loglinear test of the homogeneous association hypothesis, which we 
previously analyzed with the Breslow-Day test, drops the three-way association term, XYZ

ijkλ . The mutual 
independence model, analyzed earlier with the Cochran-Mantel-Haenszel test, would drop each of the 
two-way terms and the three-way term.  The conditional independence model examining X × Y 
association within the Z strata, as with the test of the Mantel-Haenszel odds ratio, can be investigated by 
dropping the three-way term and the XY term, XY

ijλ , because the null hypothesis assumes no three-way 
dependence (the X ×Y association does not depend on Z) and there is no XY association at any level of 
Z. Of course, other types of hypotheses can be tested, but a hierarchical approach, which does not 
include higher order terms without all of the lower order terms is usually not recommended.  Tests are 
usually based on the likelihood ratio test G2 as given above, except that the particular three-way loglinear 
model being tested is used to generate the expected frequencies and summation occurs across the three 
dimensions.  Conditional odds ratios for partial tables can be computed similar to the odds ratios 
described for two-way tables. Theus and Lauer (1999) discuss mosaic type plots for visualizing loglinear 
hypotheses.   
 
Matched Pairs 
Loglinear models can be applied to the matched pair design to test for marginal homogeneity (ala the 
McNemar test), for example.  Recall that marginal homogeneity states the marginal proportions, pi+ and 
pj+ are equal, providing information about whether there is an increase or decrease in the proportion of 
one category of response (e.g., “yes”) over time. For larger I × I square tables, the loglinear model is 
modified to specify symmetry and quasi-symmetry hypotheses in order to derive a test of marginal 
homogeneity. I use a and b subscripts here because of the special nature of the contingency table for 
matched pairs.  
 

Symmetry 
( )log ab a b abµ λ λ λ λ= + + +   

 
where µab = nπab and the parameters above and below the diagonal are equal if the row and column 
numbers are switched, such that λab = λba.  For example, if a question with three response options, “yes,” 
“no,” “maybe,” are repeated, the test symmetry tests is whether there is the same log odds of “yes”-
“maybe” as “maybe”-“yes” going from Time 1 and then Time 2. The lack of superscript indicates that the 
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specific marginal effect terms cannot differ (i.e., the log of the marginal proportions must be the same for 
Time 1 and Time 2 responses).   
 

Quasi-Symmetry 
( )log X Y

ab a b abµ λ λ λ λ= + + +  
 
The parameters are defined similarly to the symmetry model, but the quasi-symmetry only requires that 
odds ratios above and below the diagonal are equal, θab = θba, which allows the marginal proportions to 
differ.  Marginal homogeneity can then be computed from the these two G2 values, where the differences 
is also chi-square distributed.  
 

2 2 2
marginal homogeneity quasi-symmetry symmetryG G G= −  

 
There are several specific hypotheses beyond these tests that can be conducted in which coding 
schemes are set up for I × J tables to investigate whether certain patterns of change occur.  The levels or 
topological schemes are discussed by Hauser (1980).  
 
Software Examples 
The examples below reanalyze the 2 × 2 contingency table from the Quinnipiac poll data.  Look back at 
the chi-square analyses in the prior handout for comparison. 
 
SPSS 
*Loglinear models. 
 
*saturated model 
loglinear ind(0,1) response(0,1)  
  /criteria=delta(0)  
  /print=default estim  
  /design=ind response ind by response. 
 
*** ML converged at iteration 2. 
     Maximum difference between successive iterations =   .00000. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
  Observed, Expected Frequencies and Residuals 
 
       Factor          Code              OBS. count & PCT.   EXP. count & PCT.      Residual   Std. Resid.   Adj. Resid. 
 
 
  ind             affiliat 
   response        Trump                    338.00 (34.42)      338.00 (34.42)         .0000         .0000         .0000 
   response        Biden                    363.00 (36.97)      363.00 (36.97)         .0000         .0000         .0000 
 
  ind             independ 
   response        Trump                    125.00 (12.73)      125.00 (12.73)         .0000         .0000         .0000 
   response        Biden                    156.00 (15.89)      156.00 (15.89)         .0000         .0000         .0000 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 Goodness-of-Fit test statistics 
 
    Likelihood Ratio Chi Square =      .00000    DF = 0  P =  . 
             Pearson Chi Square =      .00000    DF = 0  P =  . 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Estimates for Parameters 
 
 ind 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        1       .4598197463          .03546        12.96565          .39031          .52933 
 
 response 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        2      -.0732248022          .03546        -2.06474         -.14274         -.00371 
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 ind by response 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        3       .0375463328          .03546         1.05870         -.03196          .10706 
  *** ML converged at iteration 2. 
 
*independence model: model without the assocation term (ind by response).loglinear ind(0,1) response(0,1)  
  /criteria=delta(0)  
  /print=default estim  
  /design=ind response. 
 
 

(only the fit information is needed from the independence model so that is all that is included below) 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 Goodness-of-Fit test statistics 
 
    Likelihood Ratio Chi Square =     1.12346    DF = 1  P =  .289 
             Pearson Chi Square =     1.12168    DF = 1  P =  .290 
 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
  
 

Note that the difference in fit of the two models is the same as the fit of the second independence model 
2 2 1.2346 0 1.2346independence saturatedLR LRχ χ− = − =  and that the odds ratio for the ind × response relationship is 

e.038 = 1.46. 
 
 

R  
I use the MASS package function loglm, which requires a 2 x 2 table of counts and dimension names. It 
would be possible to compare two models using anova(logm1,logm2) but it does not provide any 
additional information here, so I omitted it. 
> #library(MASS) 

> tbl = table(mydata$ind, mydata$response) 

> tbl                  

                    0   1 

  party affiliate 491 629 

  independent      63  48 

> #dimnames assigns labels for categories 

> dimnames(tbl) = list(ind = c("Party","Independent"), 

+ response = c("Trump","Biden") 

+ ) 

> 

> #Loglinear models 

> #two-way loglinear 

> library(MASS) 

> #independence model 

> logm1 <- loglm( ~ ind + response, data=tbl) 

> summary(logm1) 
 
statistics: 
                     X^2 df  P(> X^2) 
Likelihood Ratio 1.123457  1 0.2891754 
Pearson          1.121677  1 0.2895576 
 
 
> #obtain coefficients—use first column values and upper left quadrant from ind x response matrix 
> coef(logm2) 
$`(Intercept)` 
[1] 5.39890 
$ind 
      Party Independent  
  0.4598197  -0.4598197  
 
$response 
     Trump      Biden  
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-0.0732248  0.0732248  
 
$ind.response 
             response 
ind                 Trump       Biden 
  Party        0.03754633 -0.03754633 
  Independent -0.03754633  0.03754633 

 

SAS 
The parameters for the saturated model appear in the first section (with the Wald test of the interaction) 
and the likelihood ratio test is conducted comparing to the independence model by default in the 
following section.  
*the genmod procedure wants counts (frequencies as input) so they are read out into the data two data set; 
proc freq data=one; 
tables ind*response /out=two; 
run; 
 
proc genmod data=two;  
class ind response; 
model count = ind response ind*response / dist=poi link=log lrci type3 obstats; 
run; 
* type3 uses Type III sum of squares, which, as in ANOVA, uses SS for all effects partialing out all other 
effects; 
* I changed the linesize in the options at the top, ls=240 to get all of the obstats in one line without 
wrapping; 

 
The GENMOD Procedure 
                                   Analysis Of Maximum Likelihood Parameter Estimates 
 
                                                           Standard    Likelihood Ratio 95%          Wald 
 Parameter                               DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 
 Intercept                                1      4.8283      0.0894      4.6477      4.9986       2914.08        <.0001 
 ind             affiliate                1      0.9947      0.1047      0.7926      1.2033         90.29        <.0001 
 ind             independent              0      0.0000      0.0000      0.0000      0.0000           .           . 
 response        Biden                    1      0.2215      0.1200     -0.0130      0.4581          3.41        0.0650 
 response        Trump                    0      0.0000      0.0000      0.0000      0.0000           .           . 
 ind*response    affiliate      Biden     1     -0.1502      0.1419     -0.4291      0.1273          1.12        0.2897 
 ind*response    affiliate      Trump     0      0.0000      0.0000      0.0000      0.0000           .           . 
 ind*response    independent    Biden     0      0.0000      0.0000      0.0000      0.0000           .           . 
 ind*response    independent    Trump     0      0.0000      0.0000      0.0000      0.0000           .           . 
 Scale                                    0      1.0000      0.0000      1.0000      1.0000 
 
NOTE: The scale parameter was held fixed. 
                                           LR Statistics For Type 3 Analysis 
 
                                                                 Chi- 
                                    Source              DF     Square    Pr > ChiSq 
 
                                    ind                  1     186.64        <.0001 
                                    response             1       4.28        0.0385 
                                    ind*response         1       1.12        0.2892 

Sample Write-Up 
A loglinear model was used to test the association between identification as a political independent and 
candidate choice. A larger proportion of independents, 156 out of 519 (30.1%), supported Biden, 
whereas a smaller proportion of independents, 125 out of 463 (27.0%), supported Trump. The odds ratio 
was 1.46 indicating a 46% increase in likelihood of supporting Biden if the voter was an independent.  
The difference was not significant, however, as indicted by the likelihood ratio test of the independence 
model, G2(1) = 1.12, p =  .29.  
(Note: you could also report parameter estimate for the association term, the Wald chi-squared, and the 
confidence intervals if you like. And, as with the chi-square analysis, the row per cents could be reported, 
describing the percentage of party affiliates vs. the percentage of independence who supported Biden, 
for instance). 
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Three-Way Loglinear Examples 
This three-way example comes from the Quinnipiac poll analyzed in the previous handout “Three-Way 
Contingency Tables” using chi-squared analyses.5   I use excerpts from the outputs to save space. 
 
SPSS 
 
* without three-way association variable. 
loglinear state(0,1) ind(0,1) response(0,1)  
  /criteria=delta(0)  
  /print=default estim  
  /design=state ind response state by ind state by response ind by response. 
 
*saturated. 
loglinear state(0,1) ind(0,1) response(0,1)  
  /criteria=delta(0)  
  /print=default estim  
  /design=state ind response state by ind state by response ind by response state by ind by response. 

From the non-saturated model (1-ways and all 2-ways) 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
 
 Goodness-of-Fit test statistics 
 
    Likelihood Ratio Chi Square =      .02913    DF = 1  P =  .864 
             Pearson Chi Square =      .02913    DF = 1  P =  .864 
 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
   
 

From the saturated model 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
 
 Goodness-of-Fit test statistics 
 
    Likelihood Ratio Chi Square =      .00000    DF = 0  P =  . 
             Pearson Chi Square =      .00000    DF = 0  P =  . 
 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
 
 Estimates for Parameters 
 
 state 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        1       .0838086485          .02557         3.27769          .03369          .13392 
 
 ind 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        2       .4755168410          .02557        18.59709          .42540          .52563 
 
 response 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        3      -.1246547375          .02557        -4.87515         -.17477         -.07454 
 
  
 
state by ind 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 

                                                           
5 Data source: https://poll.qu.edu/georgia/release-detail?ReleaseID=3679. Note that the data extrapolated cell sample sizes and used some 
rounding, so the results should be taken as only approximate. 

https://poll.qu.edu/georgia/release-detail?ReleaseID=3679
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        4      -.0782703761          .02557        -3.06109         -.12839         -.02815 
 
 state by response 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        5      -.0336785500          .02557        -1.31714         -.08379          .01644 
 
 ind by response 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        6       .0220384578          .02557          .86191         -.02808          .07215 
 
 state by ind by response 
 
  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI 
 
        7       .0043640075          .02557          .17067         -.04575          .05448 
   

R 
#dimnames assigns labels for categories 
> dimnames(tbl) = list(ind = c("Party","Independent"), 
+                      response = c("Trump","Biden")) 
 
> counts <-array( 
+   c(308,401,132,191,323,374,103,128), 
+   dim=c(2, 2, 2), 
+   dimnames=list(state=c("OH", "GA"), 
+                 ind =c("party aff", "independent"), 
+                 response  =c("Biden", "trump")) 
+ ) 
 
 
> #three-way loglinear model 
> library(MASS) 
> #nonsaturated-no three-way 
> logmodel <- loglm( ~ state + ind + response + state*ind + state*response + ind*response, 
+                    digits=4, data=counts) 
> summary(logmodel) 
 
Statistics: 
                        X^2 df  P(> X^2) 
Likelihood Ratio 0.02912809  1 0.8644836 
Pearson          0.02912958  1 0.8644802 
 
> #saturated 
> logmodel2 <- loglm( ~ state + ind + response + state*ind + state*response + ind*response + 
state*ind*response, 
+        digits=4, data=counts) 
> summary(logmodel2) 
 
Statistics: 
                 X^2 df P(> X^2) 
Likelihood Ratio   0  0        1 
Pearson            0  0        1 
 
 
> coef(logmodel2) 

Use lefthand column values and upper-left quadrant values 
$`(Intercept)` 
[1] 5.380975 
 
$state 
        OH         GA  
-0.1246547  0.1246547  
 
$ind 
  party aff independent  
  0.4755168  -0.4755168  
 
$response 
      Biden       trump  
 0.08380865 -0.08380865  
 
$state.ind 
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     ind 
state   party aff independent 
   OH  0.02203846 -0.02203846 
   GA -0.02203846  0.02203846 
 
$state.response 
     response 
state       Biden       trump 
   OH -0.03367855  0.03367855 
   GA  0.03367855 -0.03367855 
 
$ind.response 
             response 
ind                 Biden       trump 
  party aff   -0.07827038  0.07827038 
  independent  0.07827038 -0.07827038 
 
$state.ind.response 
, , response = Biden 
 
     ind 
state    party aff  independent 
   OH  0.004364007 -0.004364007 
   GA -0.004364007  0.004364007 
 
, , response = trump 
 
     ind 
state    party aff  independent 
   OH -0.004364007  0.004364007 
   GA  0.004364007 -0.004364007 
 

 
SAS 
 
*/save out data table of counts */; 
 
proc freq data=one; 
   tables state*ind*response /out=two ; 
 title 'Test of 3-Way Table'; 
run; 
* Loglinear */ 
*the genmod procedure wants counts (frequencies as input) so they are read out into 
the data two data set; 
 
proc genmod data=two;  
class state ind response; 
model count = state ind response state*ind ind*response state*response / dist=poi 
link=log lrci type3 obstats; 
run; 
 
proc genmod data=two;  
class state ind response; 
model count = state ind response state*ind ind*response state*response 
state*ind*response / dist=poi link=log lrci type3 obstats; 
run; 
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Analysis Of Maximum Likelihood Parameter Estimates 
 
                                                                                       Standard    Likelihood Ratio 95%          Wald 
Parameter                                                            DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 
Intercept                                                             1      5.7301      0.0570      5.6163      5.8397       10112.9        <.0001 
state                 GA                                              1      0.0476      0.0796     -0.1085      0.2038          0.36        0.5505 
state                 OH                                              0      0.0000      0.0000      0.0000      0.0000           .           . 
ind                   independent                                     1     -0.8473      0.1040     -1.0542     -0.6460         66.34        <.0001 
ind                   party affiliate                                 0      0.0000      0.0000      0.0000      0.0000           .           . 
response              Biden                                           1      0.2639      0.0758      0.1158      0.4129         12.13        0.0005 
response              Trump                                           0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind             GA                 independent                  1     -0.2956      0.1537     -0.5982      0.0049          3.70        0.0544 
state*ind             GA                 party affiliate              0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind             OH                 independent                  0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind             OH                 party affiliate              0      0.0000      0.0000      0.0000      0.0000           .           . 
ind*response          independent        Biden                        1      0.1056      0.1362     -0.1606      0.3736          0.60        0.4381 
ind*response          independent        Trump                        0      0.0000      0.0000      0.0000      0.0000           .           . 
ind*response          party affiliate    Biden                        0      0.0000      0.0000      0.0000      0.0000           .           . 
ind*response          party affiliate    Trump                        0      0.0000      0.0000      0.0000      0.0000           .           . 
state*response        GA                 Biden                        1     -0.1173      0.1073     -0.3277      0.0930          1.19        0.2744 
state*response        GA                 Trump                        0      0.0000      0.0000      0.0000      0.0000           .           . 
state*response        OH                 Biden                        0      0.0000      0.0000      0.0000      0.0000           .           . 
state*response        OH                 Trump                        0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    GA                 independent        Biden     1     -0.0349      0.2046     -0.4359      0.3662          0.03        0.8645 
state*ind*response    GA                 independent        Trump     0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    GA                 party affiliate    Biden     0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    GA                 party affiliate    Trump     0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    OH                 independent        Biden     0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    OH                 independent        Trump     0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    OH                 party affiliate    Biden     0      0.0000      0.0000      0.0000      0.0000           .           . 
state*ind*response    OH                 party affiliate    Trump     0      0.0000      0.0000      0.0000      0.0000           .           . 
Scale                                                                 0      1.0000      0.0000      1.0000      1.0000 
 
          LR Statistics For Type 3 Analysis 
 
                                   Chi- 
Source                    DF     Square    Pr > ChiSq 
 
state                      1      10.82        0.0010 
ind                        1     388.34        <.0001 
response                   1      23.98        <.0001 
state*ind                  1       9.43        0.0021 
ind*response               1       0.74        0.3883 
state*response             1       1.73        0.1879 
state*ind*response         1       0.03        0.8645 

 
Sample Write-Up 
A loglinear model was used to investigate whether the association between identification as an 
independent (identified with a major party vs. independent) and candidate preference (Biden vs. Trump) 
was the same in Ohio and Georgia.  Among Ohioans, 56.56% of respondents identifying with a major 
party favored Biden, whereas 59.13% of respondents identifying as independent favored Biden, OR = 
1.05.  Among Georgians, 53.66% of respondents identifying with a major party favored Biden, whereas 
55.41% of respondents identifying with a major party favored Biden, OR = 1.03.  The likelihood ratio test 
of the three-way association term indicated that the association between party identification and the 
candidate preference did not differ significantly between Ohioans and Georgians, ( )2 1 .03G = , p = .86.   
(Notes: The odds ratios within states can be computed in the usual way as a ratio between two ratios. 
The results above focus on the homogenous association hypothesis, but several other loglinear tests, 
including the conditional independence of the ind × response association controlling for state and other 
types of odds ratios, such as the Mantel-Haenszel would be possible.) 
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