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Extensions of Item Response Models 
Fit 
Maximum likelihood estimation is generally used for fitting item response theory models. Theoretically, 
the fit of the model reflects the discrepancy between the expected and observed values in the items 
based on a single dimension of ability but the lack of fit may be due to a variety of factors including 
assumption violations. Deviance (-2 loglikelihood) and likelihood ratio chi-square values are produced in 
IRT software, but these values are  not terribly informative by themselves as there is no standard by 
which to judge whether a model has adequate fit without comparison to alternatives. Model fit can be 
used to compare the appropriateness of one-, two-, and three-parameter models, however. The 
Hausman tests compares the usual marginal maximum likelihood fit to the fit obtained with a limited 
information estimation and, although not widely available, appears to be a good assessment of global fit 
if the samples size is 1000 or more (Ranger & Much, 2020). Another metric that is sometimes mentioned 
is the coefficient of reproducibility, which is a function of the total number of errors, CR = 1 – (total 
errors/total repsonses). Some authors (e.g., Thorpe & Favia, 2012; Kline, 2005) give .85 or .90 as 
acceptable cutoffs for the coefficient of reproducibility, but this metric is not necessarily an indication of 
whether the test overall is a reliable one or all of the items are good items. 
 
Multiple Dimensionality  
Multidimensional IRT (sometimes MIRT), in which the underlying ability has two or more subdomains 
(e.g., verbal and math ability) is also possible (McDonald, 1997; Rekase, 2009). Most often in practice, 
the investigation of the number of dimensions has involved principal components analysis (PCA) or 
factor analysis.  IRT procedures often print eigenvalues (which pertain to the number of possible 
underlying dimensions) and loadings (the linear relationship between the ability and the item) from a 
principal components analysis.  Scree plots of the magnitude of the eigenvalues, typically used to select 
the number of dimensions in principal components analysis are commonly generated by IRT software. 
When there are theoretical or empirical reasons to believe there are multiple dimensions, a common 
approach has been to conduct subsequent IRT analysis separately for the different constructs (Turk et 
al., 2006). Increasingly, either confirmatory factor analysis or more flexible IRT software has been used 
to conduct IRT analyses when multiple dimensions are present (e.g., Cai, 2010; Rindskopf & Rose, 
1988). 
 
Differential Item Function 
Differential item functioning (DIF) refers to differences in the IRT parameters across groups,1 either 
differences in the difficulty (uniform DIF) or the discrimination parameter (non-uniform DIF). For example, 
in a two-parameter model, either the difficulty b, or the discrimination parameter, a, or both, could differ 
across groups. If bias exists for a particular item, one typically expects that the relationship between the 
ability and the probability of a correct response on the item (i.e., the item is a better reflection of ability in 
one group than another). The converse—that the presence of DIF indicates bias—is not necessarily true.  
DIF however is a preferable approach to investigating bias than examining proportion or mean 
differences on items or the scale. Differences across groups in the overall probability of a correct 
response on an item (base rate of a correct response) is generally not considered to be evidence of bias, 
because it has not been ruled that the difference across groups is not reflective of overall differences in 
ability between the groups. Graphical methods (e.g., plotting group ICCs next to one another) or 
statistical tests can be conducted to investigate DIF. Statistical tests can be conducted with a Cochran-
Mantel-Haenszel chi-square, logistic regression, or a likelihood ratio test using equality constraints.  The 
logistic model approach requires regressing the item on both the ability (total score) and the group 
variable to show that the effect of the group predict the item over and above the ability.  The logistic 
approach is best when the total score does not include the item of interest.    
 
 
 
 
1 The variable that is the potential source of bias does not necessarily have to be a grouping variable. It could be continuous. 
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Graded Response Models 
The graded response model (sometimes GRM) is an extension of IRT models for ordinal items (Muraki, 
1990; Samejima,1969). Graded response models involve a regression of each ordinal item on the ability 
construct, with the familiar slope and threshold estimates used with the y* ordinal logistic or ordinal probit 
(in IRT, the normal ogive model) interpretations. Instead of item characteristic curve (ICC), however, 
graded response models use the term category response curve (CRC). Predicted probability is from one 
ordinal category to the next, assuming equal odds just as in the ordinal logistic or probit models. In terms 
of the logistic version of the model, we can compute the probability of increment on the ordinal scale for 
an item, j, using the logistic cdf equation subtracting the probability of response of one category from the 
probability of response, K, from the next lower category, K - 1.2  
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Computation of the probability from the normal ogive requires the normal cdf translation that was 
discussed earlier with probit models.  The CRCs for each category may be plotted together for each item 
to examine the difficulty and discrimination at each level of the item response. Note that the 
discrimination (slope or a) parameter is usually assumed to the same across ordinal levels of the item 
variable. The difficulty parameter, b, can differ.   Item information (or either item or total score) can also 
be computed, although the computation is slightly more complicated than for the binary case and, when 
plotted, will have multiple peaks with the maximum number of peaks corresponding to number of ordinal 
response categories.   
 
In SAS you can use the /resfunc=gr option on the model line in PROC IRT and, in R, you can use  
itemtype = ‘graded’ in the mirt package.  
 
Connection to Factor Analysis 
Although IRT researchers usually distinguish item response theory from classical test theory, there is a 
clear connection (equivalence really) between IRT models and factor analysis models (e.g., Reise & 
Widaman, 1999).  Both involve the estimation of the association between an unobserved trait and 
responses on a particular item. Factor analysis can be conducted with binary or ordinal variables, 
although usually these models are conducted with confirmatory factor analysis (structural equation 
modeling) programs, such as Mplus, R lavaan, or LISREL.  The most common approaches to these 
models when the items are binary are the marginal maximum likelihood approach (Christoffersson, 1975) 
which usually gives logistic estimates (loadings), or a weighted least squares approach (Muthén, du Toit, 
& Spisic, 1997), which gives probit estimates. The loadings and intercepts (thresholds) from these 
programs are not in the IRT formulation for a and b parameters but are instead true regression slopes 
and intercepts (see the “Item Response Theory” handout for a discussion). The estimates can be 
converted to the IRT parameter values, whether in logistic or probit form, however (see Kamata & Bauer, 
2008 for details). Otherwise the models are equivalent.   
 
There are several ways to specify multiple dimensions/factors with each approach. Immekus, Snyder, 
and Ralston (2019 ) give a good overview.  Below, on the left, is the typical two-factor confirmatory factor 
analysis model (here, assume binary indicators). The bifactor is a common approach for IRT models 
(e.g., Reise, 2012), which would be specified as shown below on the right.  The illustration depicts two 
dimensions (reading and math) that predict item responses over and above the overall ability 
(intelligence).  
  

 
2 I am following the equations in our reading in that the 1/1+e form of the question is use (as opposed to the e/1+e form) which is for the 
probability at or above and therefore the probability for k is subtracted from k – 1. 
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Common two-factor CFA 

 
 
IRT Bi-Factor Model 

 
Immerkus and colleagues also discus a second-order factor (or two-tiered) model that can be specified in 
CFA (e.g., Rindskopf & Rose, 1988) or estimated with some IRT programs (e.g., Cai, 2010). 
 
Examples 
The analyses below investigate DIF males and females on five items from a verbal ability test from the 
International Cognitive Ability Resource (ICAR) repository.3 Each of the five items are binary correct or 
incorrect responses. In R mirt, I compared models with and without all of the slopes constrained.  The 
anova() function create a likelihood ratio test to compare their fits. In SAS, I compared just one item 
across groups. I’ve omitted some of the output to save space.  
 
R 
> # first sort cases by the group variable, then create a new group based on the Ns from each half 
> d <- d[order(d$sex),] 
> group <- c(rep('D1', 65), rep('D2', 133)) 
> #use lessR to subset only the numeric item variables 
> library(lessR) 
> d2 = Subset(columns=c(v2, v4, v5, v6, v8)) 
 
> library("mirt") 
 
> irtmod1 <- multipleGroup(d2, model = 1, group = group) 
> irtmod2 <- multipleGroup(d2, model = 1, group  = group, invariance = c('slopes')) 
 
> anova(irtmod1,irtmod2) 
 
Model 1: multipleGroup(data = d2, model = 1, group = group, invariance = c("slopes")) 
Model 2: multipleGroup(data = d2, model = 1, group = group) 
 
> coef(irtmod2, IRTpars = TRUE) 
$D1 
$v2 
        a      b g u 
par 1.678 -1.157 0 1 
 
$v4 
        a      b g u 
par 2.202 -1.271 0 1 
 
$v5 
        a      b g u 
par 1.621 -0.182 0 1 
 
$v6 
        a     b g u 
par 1.738 -1.22 0 1 
 
$v8 
        a      b g u 
par 1.537 -0.369 0 1 
 
$GroupPars 
    MEAN_1 COV_11 
par      0      1 
 
 
$D2 

 
3 Condon, D. M., & Revelle, W. (2016). Selected ICAR Data from the SAPA-Project: Development and Initial Validation of a Public-Domain 
Measure. Journal of Open Psychology Data, 4(1), e1.DOI: http://doi.org /10.5334/jopd.25 
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$v2 
        a      b g u 
par 1.678 -1.463 0 1 
 
$v4 
        a      b g u 
par 2.202 -0.478 0 1 
 
$v5 
        a      b g u 
par 1.621 -0.402 0 1 
 
$v6 
        a      b g u 
par 1.738 -0.912 0 1 
 
$v8 
        a      b g u 
par 1.537 -0.529 0 1 
 
$GroupPars 
    MEAN_1 COV_11 
par      0      1 
 
> #produces plot for the expected score of the total scale 
> plot(irtmod1) 
> #item plots allowed one at a time using item number, trace is ICC and info is information 
> itemplot(irtmod1,1,type="trace") 
> itemplot(irtmod1,1,type="info") 
 

  

 

SAS 
SAS PROC IRT wants the grouping variable to be coded 1 and 2, so I compute a new variable first. The 
equality option allows the user to impose constraints across groups on a single item (here, I constrained 
v8), or multiple items, and either the difficulty parameter [intercept] or discrimination parameter [slope] or 
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both (same statements but separate by a comma).  Some output has been omitted to save space (the 
item parameters are from the model without constraints).  
 
data two; set one; 
if sex=1 then sexgrp=2; 
if sex=0 then sexgrp=1; 
run; 
 
proc freq data=two; 
run; 
 
*see Zhang 2015 SAS white paper on DIF; 
 
ods graphics on; 
proc irt data=two plots=(scree icc iic tic); 
var v2 v4 v5 v6 v8; 
group sexgrp; 
run; 
 
proc irt data=two plots=(scree icc iic tic); 
var v2 v4 v5 v6 v8; 
group sexgrp; 
equality v8 /parm=[slope] between_gp=[1 2]; 
run; 

 
Unconstrained Model Parameters 
 
The IRT Procedure 
                                                 Model Fit Statistics 
 
                                        Log Likelihood             -513.2356301 
                                        AIC (Smaller is Better)    1066.4712603 
                                        BIC (Smaller is Better)    1132.2366009 
                                        LR Chi-Square              21.993395191 
                                        LR Chi-Square DF                     43 
 
                                               Item Parameter Estimates 
                                                       sexgrp = 1 
                                                                         Standard 
                          Item    Label    Parameter       Estimate         Error    Pr > |t| 
 
                          v2      v2       Difficulty      -0.86040       0.21562      <.0001 
                                           Slope            3.74945       1.86719      0.0223 
                          v4      v4       Difficulty      -0.97362       0.20270      <.0001 
                                           Slope            7.18842       8.59941      0.2016 
                          v5      v5       Difficulty      -0.19434       0.23204      0.2011 
                                           Slope            1.58286       0.62009      0.0053 
                          v6      v6       Difficulty      -1.46738       0.52646      0.0027 
                                           Slope            1.18601       0.51026      0.0101 
                          v8      v8       Difficulty      -0.29773       0.19315      0.0616 
                                           Slope            2.59787       1.07634      0.0079 
 
                                                        sexgrp = 2 
                                                                         Standard 
                          Item    Label    Parameter       Estimate         Error    Pr > |t| 
 
                          v2      v2       Difficulty      -2.00256       0.65656      0.0011 
                                           Slope            1.02889       0.42797      0.0081 
                          v4      v4       Difficulty      -0.51420       0.16916      0.0012 
                                           Slope            1.86071       0.60700      0.0011 
                          v5      v5       Difficulty      -0.44692       0.19674      0.0116 
                                           Slope            1.33482       0.43934      0.0012 
                          v6      v6       Difficulty      -0.81359       0.18102      <.0001 
                                           Slope            2.40359       0.92748      0.0048 
                          v8      v8       Difficulty      -0.58986       0.21482      0.0030 
                                           Slope            1.27609       0.39315      0.0006 
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Constrained Model Fit 
 
     The IRT Procedure 
 
                                                 Model Fit Statistics 
 
                                        Log Likelihood             -514.2091419 
                                        AIC (Smaller is Better)    1066.4182837 
                                        BIC (Smaller is Better)    1128.8953573 
                                        LR Chi-Square              22.853783658 
                                        LR Chi-Square DF                     44 
 
Difference between the two chi-squares is a LR test of (non-uniform) slope DIF, which I computed by 
hand: 22.853783658 - 21.993395191 = 0.860388467 with 44- 43 = 1 df, which is not significant.  
 
 
Obtain separate ICC plots 
ods graphics on; 
proc irt data=two plots=icc; 
var v2 v4 v5 v6 v8; 
by sexgrp; 
run; 
 

sexgrp=1 

 

sexgrp=2 
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