DEVELOPMENT OF NORMALIZED VEGETATION, SOIL AND WATER INDICES DERIVED FROM SATELLITE REMOTE SENSING DATA

Takeuchi, W. & Yasuoka, Y.

E-mail: wataru@iis.u-tokyo.ac.jp

Nov. 25th, 2004
ACRS2004 @ Chiang Mai, THAILAND

VEGETATION MONITORING INDICES

- NDVI cron developed for AVHRR
 - RVI (Ratio Vegetation Index)
 - PVI (Perpendicular Vegetation Index) [Richardson, 1987]
 - SAVI (Soil Adjusted Vegetation Index) [Huete, 1992]
 - VSW (VSW Index) [Yamagata, 1997]
 - BSI (Bidirectional Structure Index) [Honda, 2000]
- Newly developed indices for MODIS
 - EVI (Enhanced Vegetation Index) [Huete, 2000]
 - NDSI (Normalized Snow Index) [NSIDC, 2002]
 - NDWI (Normalized Water Index) [Gao, 1996]

There is no method designed to monitor vegetation, soil and water simultaneously.

OBJECTIVES OF THIS STUDY

- To develop a set of normalized vegetation, soil and water indices (NDXI) by extending the idea of NDVI using SWIR channels.
 - Their spectral characteristics are investigated for a variety of land cover types.
 - Sensitive analysis is conducted with different spectral response sensors including ASTER, AVHRR, ETM and MODIS.
 - Atmospheric effects are evaluated using radiative transfer simulation under a variety of aerosol, visibility, topography and sun-target-sensor geometry.

SPECTRAL VARIETIES OVER LAND

SPECTRAL CURVE CLASSIFICATION

- **♦ Vegetation group (convexly curve)**
 - **◆**Conifers, broadleaf, grass
- **♦Soil** group (ascending curve)
 - **◆**Concrete, sand, silt, clay, dryclay, asphalt
- **♦ Water** group (descending curve)
 - **♦**Water, snow

The spectral signatures over a variety of land covers are mainly classified into three categories including vegetation, soil and water.

NORMALIZED VEGETATION-SOIL-WATER INDICES

$$\begin{cases} NDVI = (NIR - VIS) / (NIR + VIS) \\ NDSI = (SWIR - NIR) / (SWIR + NIR) \\ NDWI = (VIS - SWIR) / (VIS + SWIR) \end{cases} (3)$$

where VIS: Visible (630nm, channel1)

NIR: Near infrared (860nm, channel2)

SWIR: Shortwave infrared (1620nm, channel6)

$$\overline{\sigma} = \int_{\lambda_1}^{\lambda_2} \Phi(\lambda) \sigma(\lambda) d\lambda \quad \frac{\Phi(\lambda) : \text{Spectral response of sensor}}{\sigma(\lambda) : \text{Target reflectance}}$$

LAND COVER CHARACTERIZATION WITH NDXI

	CF									WT	
NDVI	0.83	0.83	0.81	0.08	0.23	0.22	0.14	0.24	0.15	0.06	0.05
NDSI	-0.47	-0.40	-0.35	-0.11	0.06	0.01	-0.02	0.11	0.02	-0.26	-0.72
NDWI	-0.60	-0.64	-0.65	0.03	-0.29	-0.23	-0.12	-0.34	-0.17	0.20	0.69

Abbreviations in the list are as follows, CF:conifers, BL: broadleaf forest, GR: grass, CC: concrete, SD: sand, SL: silt, CL: clay, DC: dry clay, AP: asphalt, WT: water, SN: snow.

- **♦NDVI** has much higher positive values (0.81~0.83) in vegetation group (CF, BL, GR)
- **♦NDSI** has larger values (-0.11~0.11) in soil group (CC, SD, SL, CL, DC, AP)
- **NDWI** has positive values (0.20~0.69) only in water group (WT, SN)

NDVI, NDSI, NDWI represents the existence of vegetation, soil and water respectively.

FRAMEWORK OF THIS RESEARCH

SATELLITE BORNE SENSORS WITH SWIR

	AVHRR/3*		MODIS		ASTER	ETM	
Ch.	Width	Ch.	Width	Band	width	band	Width
1	580-680	1	620-670	2	630-690	3	630-690
2	725-1000	2	841-876	3	760-860	4	780-900
3A	1580-1640	6	1628-1652	4	1600-1700	5	1550-1750

* NOAA15-17 for daily passes

SWIR is effective to monitor moisture conditions

- **♦** Water stress on tree canopy with Landsat TM [Tucker, 1980]
- **♦** Moisture on a leaf in laboratory measurement [Cibula, 1992]
- **♦** Land surface water condition with MODIS [Gao, 1996]

SENSITIVITY ANALYSIS ON DIFFERENT SENSORS

- **♦NDVI**: in vegetation group, ETM has the largest value followed by AVHRR, ASTER and MODIS.
- **♦NDSI:** in soil group, ETM and MODIS have the same value, and ASTER and AVHRR have the same value lower than those of ETM and MODIS.
- **♦NDWI**: in water group, MODIS has the largest value followed by ASTER, AVHRR and ETM.

Soil group have relatively larger variations on NDXI in terms of sensors' difference.

COMPARISON OF DIFFERENT SENSORS

Tokyo metropolitan area

Terra MODIS (500m)

Terra ASTER (30m)

Evaluate the difference of spatial resolution on the same observation condition (Jun. 4th, 2001 at 2:49 GMT)

COLOR COMPOSITE OF NDXI AS RGB

Tokyo metropolitan area

Terra MODIS (500m)

Terra ASTER (30m)

R:G:B=NDSI:NDVI:NDWI

COMPARISON OF NDXI DIFFERENT SENSORS

- **♦** NDVI, NDSI and NDWI values are in linear relationship between MODIS and ASTER
- **♦** The portion where NDVI are negative correspond to water and MODIS and ASTER are in non-linear formula.

FRAMEWORK OF THIS RESEARCH

RADIATIVE TRANSFER SIMULATION

6S code [Vermote, 1997]

- **♦** Designed for satellite sensors
- **♦** Absorption by water vapor and ozone
- **♦** Scattering by aerosol
- **♦** Optical thickness
- **♦** Elevation of the target

Table 2. List of input parameters for 6S code.

Item	Variable			
Date	June 4th 11:00 (JST)			
Solar zenith / azimuth	14.85 deg., 144.91 deg.			
Sensor zenith / azimuth	0 to 50 every 5 deg, 180 deg.			
Sensor type	MODIS channel 1, 2, 6			
Visibility	0 to 50 every 5 km			
Atmospheric model	Mid latitude summer			
Aerosol model	Continent, marine, urban			
Elevation	0 to 10 every 1 km			
Apparent reflectance	0			

Sun Target Sensor Geometry (STSG)

Calculate the differences between the top of atmosphere (TOA) NDXI and ground based NDXI on a variety of STSG and atmospheric conditions

ATMOSPHERIC EFFECTS - VEG. AND WATER

In vegetation group, NDVI of TOA is 0.07 to 0.2 smaller than that of ground

In water group, NDWI of TOA is 0.02 larger than that of ground

ATMOSPHERIC EFFECTS - SOIL

In soil group, NDVI of TOA is 0.01 to 0.07 smaller than that of ground

CONCLUDING REMARKS

- **♦NDVI, NDSI, NDWI** represents the existence of vegetation, soil and water respectively.
- **♦**Soil group has relatively larger variations on different sensors in terms of NDXI.
- **♦NDVI, NDSI** and **NDWI** values are in linear relationship between **MODIS** and **ASTER**.
- **◆TOA** values of NDVI and NDSI get smaller than those of ground due to atmospheric effects.

