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Abstract—in this paper, we present an object-based approach data include urban growth planning, emergency response and
for urban land cover classification from high-resolution multispec-  management, and homeland security applications. The vision
tral image data that builds upon a pixel-based fuzzy classification for The National Map includes near-real-time adaptation of the
approach. This combined pixel/object approach is demonstrated h Th d and : d hod
using pan-sharpened multispectral IKONOS imagery from dense map to ¢ an.g.es.. us, aUtomate. "_’m semiautomated metnods
urban areas. The fuzzy pixel-based classifier utilizes both spectral for the classification of roads, buildings, and other land cover
and spatial information to discriminate between spectrally similar  types in the urban environment are of great interest.

Roadand Building urban land cover classes. After the pixel-based  Automated and semiautomated land-cover classification
classification, a technique that utilizes both spectral and spatial and road/building extraction can be accomplished using either

heterogeneity is used to segment the image to facilitate further . . . .
object-based classification. An object-based fuzzy logic classifier pixel-based or object-based approaches. Pixel-based classifi-

is then implemented to improve upon the pixel-based classifica- Cation schemes seek to identify the class of each pixel in the
tion by identifying one additional class in dense urban areas: non- imagery by comparing the-dimensional data vector for each
road, nonbuilding impervious surface. With the fuzzy pixel-based pixel with the prototype vector for each class. The data vectors
classification as input, the object-based classm_er then uses Shape’[ypically consist of a pixel's gray-level values from multispec-
spectral, and neighborhood features to determine the final classi- tral channels and/or textural and contextual measures that have
fication of the segmented image. Using these techniques, the ob-
ject-based classifier is able to identifyBuildings, Impervious Sur- been computed from those channels. Textural and contextual

face and Roadsin dense urban areas with 76%, 81%, and 99% measures contain information about the spatial distribution of

classification accuracies, respectively. tonal variations within a band. Object-based approaches do not
Index Terms_Fuzzy |OgiC, high_reso|uti0n imagery’ image pro- Operate direCtly on indiVidUaI piXeIS but on ObjeCtS Consisting
cessing, urban land cover. of many pixels that have been grouped together in a meaningful

way by image segmentation. In addition to spectral and textural
information utilized in pixel-based classification methods,
image objects also allow shape characteristics and neighbor-
ITH THE RECENT availability of commercial high- hood relationships to be used for the object’s classification.
resolution remote sensing multispectral imagery fromowever, the success of object-based classification approaches
sensors such as IKONOS and QuickBird, it is possible to ideis-very dependent on the quality of the image segmentation.
tify small-scale features such as individual roads and buildingsBecause of the complex nature and diverse composition
in urban environments. Road network and building footprinif land cover types found within the urban environment, the
identification are important tasks for many applications. F@roduction of accurate urban land cover maps from high-res-
example, The National Map [1] being developed by the U.8lution satellite imagery is a difficult task. Conventional
Geological Survey (USGS) will provide accurate, current, andlethods for pixel-based classification of multispectral re-
nationally consistent digital data for the United States anmflote sensing imagery [2] such as parallelepiped, minimum
its territories. The National Map will contain high-resolutiordistance from means, and maximum likelihood only utilize
orthorectified digital imagery, surface elevation data, severgbectral information and consequently have limited success
vector feature data layers, geographic names for physical anclassifying high-resolution urban multispectral images [3].
cultural features, and land cover classification maps. IncludedAs many urban land cover types, such as roads, buildings,
the vector data are feature layers for both the road network gssrking lots, etc., are spectrally similar, spatial information
the building footprints. Potential uses for the image and featugch as texture and context must be exploited to produce more
accurate classification maps [4]. In addition to the spectral
similarity between land cover types, remote sensing images
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A variety of segmentation techniques have been applied toThe urban land cover classes used in the pixel-based clas-
remote sensing imagery with varying degrees of success. Ssification wereRoad Building, Grass Treg Bare Soi] Water,
mentation of remotely sensed images is a difficult problem daed Shadow Several of the land-cover classes, such as the
to mixed pixels, spectral similarity, and the textured appedRoadBuilding and TredGrass classes, are spectrally similar
ance of many land-cover types. Many segmentation algorithigasd have a significant amount of spectral overlap. To combat
are based on a region-growing approach where pixels are itiis problem, the fuzzy pixel-based classifier makes use of
atively grouped into regions based on predefined similarity cspatial information in addition to spectral information to help
teria. Examples of region-growing approaches can be founddiscriminate between spectrally similar classes. The entropy
[12]-[14]. Pixel classification and region growing were comtexture feature, calculated using axQ0 occurrence window
bined in [15] for image segmentation and classification. A sef22], was found to greatly increase the discrimination between
mentation and classification approach using a Markov randdhe Grassand Treeclasses. To discriminate between Read
field model is presented in [16]. A segmentation method f@ndBuilding classes, a contextual feature measuring the spatial
high-resolution satellite imagery using residuals of morphologimensions of spectrally similar groups of connected pixels
ical opening and closing transforms is presented in [17], améhs used. A simple algorithm was used to extract the length and
a neural-network-based approach for classifying urban areeisith of spectrally similar connected groups of pixels from the
using this morphological segmentation is given in [18]. An olRPS-MS imagery, resulting in a two-band length-width feature
ject-based approach for urban land cover classification is pisage. These two features were found to reduce the number of
sented in [19]. misclassifications between tiRoadandBuilding classes.

The approach presented in this paper utilizes both a pixel-The hierarchical pixel-based fuzzy classifier allows indi-
based and object-based approach. Individual image pixels widual pairs of classes to be classified using only the spatial
first classified using a fuzzy classifier that makes use of botfbatures best suited for those classes. The fuzzy classifier
spectral and spatial information. The imagery is then segmentadkes use of a maximum-likelihood classification to partition
and features are derived from the segmentation image. The pikel PS-MS data into four set€&rass-Tree Road-Building
classification is then used with additional object features to cladfater-Shadowand Bare Soil A membership value for each
sify the image objects. By using an object-based fuzzy logitass in each set is then calculated from membership functions
approach in addition to the per-pixel fuzzy classification, adenerated from the PS-MS data plus the appropriate spatial
ditional information that was not available in the pixel-basegheasure, entropy for th@rass-Treeset and length-width for
classification can be identified and used to improve the over#iie Road-Buildingset. Gaussian-shaped membership functions
urban land cover classification result. are used to represent both the PS-MS and entropy data, while

The remainder of this paper is organized as follows. the membership functions for the length-width contextual
pixel-based hierarchical fuzzy classification technique th&tatures are learned using a multilayer perceptron neural net-
utilizes both spectral and spatial information to produce urbavork trained using the standard back-propagation algorithm.
land cover maps is summarized in Section Il and comparédter the calculation of membership in each of the classes, the
to the standard maximum-likelihood classification approacmax operator is used for defuzzification to generate a crisp
The image segmentation method used in this study is presentkssification.
in Section Ill. The segmented image is then classified by Both maximum-likelihood classification and the fuzzy hier-
incorporating the results of the fuzzy pixel-based classificatioatchical classifier were applied to the IKONOS dataset. An ac-
shape and neighborhood information from the segmentedracy assessment of the resulting classification was performed
image, and the raw multispectral image data. This methodologyaking use of reference pixels that were independent of the
and corresponding results are presented in Section IV. Finaltyxels used to train the classifier. The class accuracies for the
the conclusions are presented in Section V. hierarchical fuzzy and maximum-likelihood classifications are

shown in Table I. There is an increase of at least 10%, and up
to 25%, in class accuracy for all classes ex&sare Soil which

1. HIERARCHICAL PIXEL -BASED FUZZY CLASSIFICATION remained at 96%. An urban image subset is shown in Fig. 1 and

the corresponding maximum-likelihood and hierarchical fuzzy

Here we briefly summarize the hierarchical pixel-based fuzgjassifications are shown in Figs. 2 and 3, respectively.
classification approach and results that are used as input to the
object-based classifier described in subsequent sections. Addi-
tional details of the pixel-based fuzzy classification method- . 1 MAGE SEGMENTATION
ology and results can be found in [4] and [20]. The imagery
used for this study is an IKONOS image dataset of Columbia, The fuzzy pixel-based classification approach produces
MO, acquired on April 30, 2000. IKONOS images contain foua classification map that is more accurate than the max-
multispectral bands with 4-m resolution (red, green, blue, anmdum-likelihood classifier by allowing different sets of classes
near infrared) and a panchromatic band with 1-m resolution. o be classified using different spatial features in a hierarchical
our study, we fused the panchromatic band with the multispdormat. However, there are still significant classification errors
tral bands using a color normalization method [21] to produde dense urban areas (Fig. 3). In the present urban land cover
a four-band pan-sharpened multispectral (PS-MS) image witiap, all man-made structures are classified as eixd
1-m resolution. or Building. In suburban areas, this scheme is appropriate as
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TABLE |
COMPARISON OFURBAN LAND COVER CLASS ACCURACIES FOR
MAXIMUM -LIKELIHOOD CLASSIFIER AND HIERARCHICAL
PIXEL-BASED FUzzY CLASSIFIER

Maximum Hierarchical
Class Likelihood Fuzzy
Classifier Classifier
(%) %)
Road 70.6 88.3
Building 72.8 83.9
Grass 84.2 95.0
Tree 89.1 99.5
Bare Soil 96.0 96.0
Water 69.2 94.8

Fig. 1.

Fig. 1. One-meter resolution panchromatic IKONOS image subset of der Road
urban area. " M Building
. ¥ W Grass
residential homes and streets dominate the landscape. Howe . =g:,-e &
in more dense urban areas, there are significant amounts il B vae
nonroad impervious surface land cover, such as parking lots ¢ M shadow

large sidewalks, and it is very desirable to differentiate between

these surfaces and buildings. The fuzzy classifier is unableFi@ 3. Crisp output of fuzzy classifier for dense urban image shown in Fig. 1.

correctly identify these areas because they are so spectrally

similar to both theRoadandBuilding classes. Here we adopt aerogeneity must be less than a user set valyiezalled the scale

segmentation and object-based classification approach to foarameter. A%, is increased, the size of segments found in an

ther refine the fuzzy pixel-based urban classification by addifigage will increase. The procedure stops when there are no pos-

an Impervious Surfacelass to identify nonroad, nonbuildingsible merges with a value éf;;s less tharhs. The method used

impervious surface. Because this land cover class is not fouid finding two potential segments for a merge is local mutual

to a large extent in residential areas, and the fuzzy classiftegst fitting. For a segment, a neighboring segmeidt is found

performs well in those areas, the rest of this paper will focus émat has the smallest value bf;s with A. For segment3, the

the classification of dense urban areas only. neighboring segmen is found that has the smallest value of
The image segmentation algorithm used in this study follows;;g with B. If segmentC and segmentl are the same segment

the approach given in [13] where the segmentation is accothen segmenB is the local mutual best fit fad. If not, then seg-

plished by region merging. The segmentation is initialized witmentB replaces segmeunt and segmen® replaces segmerit

each pixel in the image as a separate segment, and as the anal-the procedure is repeated until the two local mutual best fit-

cedure progresses segments are merged together. The dectsigrsegments are found.

to merge two segments together is based on the increase in hebifferent measures of heterogeneity can be used that take into

erogeneity of the new segment;, when compared to its con- account both spectral and shape heterogeneity. Here, the spec-

stituent segments. In order to allow a merge, the increase in he#d variance of each multispectral channel in the segment is
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used to measure spectral heterogeneity, and the ratio of the seg-
ment’s perimeter length to the perimeter length of a square con-
taining the same number of pixels is used to measure shape het-
erogeneity. These heterogeneity measures favor segments with e
minimal spectral variance and compact shape. The increase in
heterogeneity when two segments are merged is calculated as

m+1 b
hait = Y wq (n1 (hmq = h1g) + 12 (hmg = hag)) (1)

q=1

whereh,q is the resultant heterogeneity of the merged segment
for heterogeneity measugeh, andh,, are the heterogeneities N
for the two segments being merged for meagyrg andns are
the number of pixels in each of the two segments being merged;
andw, is the weight for each heterogeneity measure. The weight
determines the influence of each heterogeneity measure to the
total increase in heterogeneiby;s. For the specific case of
IKONOS image data with four spectral channels= 4 for the : =
heterogeneity measures described above. The pararhg;grg Fig. 4. Segmentation of dense urban image shown in Fig. 1.
hiq, hag, andw, for ¢ = 1 — 4 are the spectral heterogeneity
measures and weights, ahgls, h15, hos, andws are the spatial
heterogeneity measures and their weight. The goal of using an object-based approach at this stage in
The region-growing segmentation algorithm was applied 8 processing is to improve the urban land cover classifica-
the IKONOS image and a subset of this showing the segmdi@n in dense urban areas by discriminating between buildings
tation of a dense urban area (Fig. 1) is shown in Fig. 4. Theged nonroad impervious surface. This was not possible with the
results were obtained using a scale paramb;eh 700 000 maximum-likelihood or the fuzzy pixel—based approaches. The
and weightsw, = 1 for ¢ = 1 — 4 andw; = 400. Although ~Strategy employed for the discrimination betweenBodding
the weight for the shape heterogeneity measure is much larggf Impervious Surfacelasses is to label all pixels classified
than the weights for the spectral heterogeneity measures, shaguilding from the fuzzy pixel-based classification lasper-
heterogeneity has less of an irnlz)acth:ufi]H than spectra| het- vious Surfaceand use subsequent object-based classification
erogeneity because the increase in spectral heterogeneity wigghniques to identifuildingsegments from within thenper-
two segments are merged is much larger than the increas&ipps Surfacelass. The object features used to iderfitylding
shape heterogeneity. IKONOS imagery has very low contra8ggments are the classes of the constituent pixels that make
and it was found that if the image is histogram equalized befd#® the segment, morphological shape information, location of
segmentation, the segmentation results were greatly improve@tentialBuilding segments with respect hadowsegments,
While many of the road and impervious surface regions in tti@ean panchromatic brightness values of the segment, and multi-
image are broken into multiple segments, the segmentation sa@ectral mean and variance values from the PS-MS data in each
cessfully segments most of the buildings in the image as sin§Rgment. Based on these object features, a fuzzy logic rule base
segments. From this segmentation image it is then possibldga!sed to discriminate betweuilding andImpervious Sur-
use an object-based classification approach to differentiate fkcesegments.
tween theBuilding andImpervious Surfacelasses.

A. Fuzzy Membership of Image Objects From Pixel Class

Initially, fuzzy membership values in each class are calcu-
IV. OBJECT-BASED Fuzzy CLASSIFICATION lated for the segments based on the proportion of each class
OF THE SEGMENTED IMAGE present in the segments from the per-pixel image classification.

All pixels classified adBuilding from the fuzzy pixel classifi-

_Once a successfully segmented image is obtained, it is P§tion are changed fenpervious Surfaceo the segments ini-
sible to apply an object-based fuzzy logic classification to they iy have no membership in ttguilding class. Subsequent ob-
segmentation image to assign a class label to each of the §8g¢.hased processing is utilized to identByilding segments
ments. Because we are dealing with image segments insteafl §f, segments with a high membership value inlthpervious
pixels, object features such as shape and neighborhood infgffaceciass. Ans-function is used to calculate the member-
mation are available for use in the classification that were ngt,ip values of a segment in each of the classes. First, the per-
available in the pixel-based fuzzy classifier. In addition, SPeEentagep;, of each class present in the segment is calculated
tral statistics such as the mean and variance of the pixels in egehy, the classification image, wheie= 1, ..., n,, andn, is the

segment can be calculated. Because the image has already Be@fher of classes. The membership value in each plag,; )
classified on a per-pixel basis, an initial fuzzy classification g ~5|culated from the-function as ’

the image segments can be performed by analyzing the classes
of the constituent pixels in each segment. i (pi) = S (pi;0.0,0.5,1.0) (2)
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where lengths are used as shape information to help classify the seg-
0, forz <a ment. Buildings are modeled as segments that are approximately
1 (o) f s <b rectangular in shape and have a large membership value in the
2 (b—a ’ ore<z= Impervious Surfacelass. An “approximately rectangular” seg-
S(xz;a,b,c) = 3) :

1
2

acs:g)27 forb <z < c ment is modeled as a segment with the following attributes:
about four endpoints with angles close td® 3hd large sepa-
ration, about two or less endpoints with angles much larger than
Segments consisting of pixels primarily from one class haegy  and about two or less endpoints with angle much smaller
membership values close to one in that class and membersfig 90, Because the attributes of an “approximately rectan-
values close to zero in the other classes. Segments containyjjghy” segment are imprecise and the shapes of buildings vary,
proportionately large numbers of pixels in several classes haygzy membership functions are used to measure how closely

no membership values close to one in any of the classes, #&s endpoint angles and the line segment lengths between the
flecting the ambiguity of the information extracted from th%ndpoints match the different criteria.

/N

—_ =

forz > c.

pixel classifications in the segment. The subsotipt .. i (p:) First, three fuzzy membership values are calculated for each
indicates that these membership values were calculated fromdRg|eton endpoint angte: about 90, 1190 (6;), larger than 99,
per-pixel classification of the image segments. t>90(6;), and smaller than 901 90(6;), wherei = 1,. .., n.,

andn. is the number of endpoints in the segment skeleton. First,
t~90(0;) is calculated using a-function as
Shape information for each segment is measured using the

B. Morphological Shape Processing

morphological skeleton of the segment. Morphological skele- pgo (8i) = m (6:5 70, 80,85, 95,100, 110) (4)
tonization is a process for reducing a binary shape, in this c3sgere

a single segment, to a graph that largely preserves the extent

and connectivity of the segment while discarding the foreground g(x a.b,¢) ;8:2 E ; c:‘z 2f

pixels in the segment. While a wide variety of skeletonizing ak (z; a, b, c,d, e, f)= 1 forc < o < d
gorithms exist, all do not, however, guarantee the production 1’_ S(wd,e, f) ford < z < f

of a connected skeleton [22]. The skeletonizing algorithm used R . (5)
here is based on a morphological thinning procedure andgdgip, 11=00(0;) and pi<oo (8
guaranteed to produce a connected and one-pixel-thick skelegan

[23]. The skeleton is found by cyclically applying morpholog-

;) are calculated using-functions

ical thinning operations to the segment until no further thinning w90 (6;) =S (6;95,100,110) (6)
is possible. The segment is iteratively thinned with eight struc- fi<oo (8;) =1 — S (6;;70,80,85). (7)
turing elements during each thinning cycle. The structuring el-
ements used for the thinning are The angle values controlling the shape of the membership func-
tions in (4), (6), and (7) where chosen so that angles matching
0 0 0 L . .
1 the dgscnptlon of the membershlp func.tlo_ns would have mem-
1 1 1 bership close to one, while angles deviating from the descrip-
tions would have membership values approaching zero.
A membership value to quantify “large separation” between
0 0 the skeleton endpointg;s(e;),i = 1,...,n,., is calculated for
1 1 0 each line segment connecting the segment skeleton endpoints as
1

_ . prs (e;) = S (min [d;, diy1]53,5,7) (8)
and their 90 rotations. The ones are the foreground, and the

zeros are the background elements of the structuring elememeree; is theith endpoint, and; is the distance between end-
During each thinning iteration, all eight structuring elementointse;_; ande;. “Large separation” is defined in this case as
are individually passed over the segment as a convolutiohging significantly larger than 5 m. To identify endpoints that
mask, thereby removing the pixel at the center of the stru@ave both angles near 9@nd large separation, the fuzzy in-
turing element if the pixels of the segment exactly matdersection ofi.g0(f;) andurs(e;) is calculated using theiin
the background and foreground elements of the structuriagerator
element. This skeleton is very sensitive to small variations in

the boundary of the original segment. In order to minimize

the sensitivity to boundary variations, the original segmentsizzy quantifiers [24] are used to calculate membership values
are initially smoothed by performing a morphological closingor fuzzy sets describing “about four” or “about two or less.”
operation using a five-pixel diameter disk-structuring elementhe membership value for a segment ha\/ing about four end-

After the skeleton has been extracted from the segment, fgints with angles close to 9@nd large separatign, is calcu-
endpoints of the skeleton are identified. Line segments are thgfed as

found to connect the skeleton endpoints, and the angle between (

ti~90,Ls (€5) = min [p~oo (6i) , pus (eq)] .- ©)

the two line segments connected to each endpoint is calculateﬂl4 -

i o9 X . X H~90,LS (6,),10,1525,5565,70 . (10)
This process is illustrated in Fig. 5. The angles and line segment

i=1
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@)

(b)

(© (d)

(e) ®

Fig. 5. Morphological skeleton processing for image segments shown in (a) and (b). Result of skeletonizing algorithm shown in (c) and (d) fomeraige seg
(a) and (b), respectively. The endpoints of the skeletons have been highlighted in gray. In (e) and (f), the skeleton endpoints have been camneetpddits
and the endpoint angles identified.

The membership values for a segment having about two or lésgh-resolution image will vary depending on the sun azimuth
angles much larger than 9Qu»~., and having about two or lessand elevation angles and the satellite sensor acquisition azimuth

angles much smaller than 9Qu» ., are calculated as angle. As the sun elevation angle decreases frginte length
ne of the shadow buildings cast along the ground grows, and as
fos =1—8 (Z 90 (6:);2.0,3.0, 4.5) (11) the sunand sensor azimuth angles get further apart, the amount
i=1 of shadows visible to the sensor will increase. If shadows are

ne present in the image, they can be used to help ideBiifyding
po<c =1—=S (Z ti<oo (0 ; 2-0»3074-5) . (12) segments. For the IKONOS image in this study the sun eleva-
i=1 tion angle was 6%, the sun azimuth angle was 3%nd the
Finally, the membership value for a segment being “approx¢ensor azimuth angle was 352s a result, building shadows
mately rectangularj:r is calculated using the fuzzy intersecare prominent as seen in the image subset shown in Fig. 1.
tion of p4, o, andus< with themin operator, Also note that the shadows are for the most part well segmented
(13) (Fig. 4), thereby allowing successful neighborhood analysis.
The process for identifying segments Bslilding using
, , neighborhood analysis &hadowsegments is as follows. First,
C. Segment Neighborhood Analysis segments with membership value of at least 0.5 inghadow
A common feature that buildings possess is that they catass are identified. Then the segments bordering the potential
shadows on the ground. The amount of shadows present iBleadowsegments in the direction of the sun azimuth angle are

KR = min [M47 H2>, M2<] .
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extracted. Segments with high membership in lih@ervious  The parameters controlling the shape of the membership
Surfaceclass that share a border with these poter@izhdow function were chosen such that segments with a mean value
segment are likelyBuilding segments. The search directiorwithin one-half of a standard deviation of the training data mean
for segments neighboring potent@hadowsegments must be will have membership greater than 0.5. The membership values
quantized into one of eight directions because we are workipg;s ; indicate the degree of similarity between a segment and
on a digital image grid. Because of this, segments that ahe Building training data for each multispectral band. These
as much as 45 off the direction of the sun azimuth anglevalues are combined to form a single fuzzy membership for the
will be identified as potentiaBuilding segments. To avoid segmentuy;s by calculating the fuzzy intersection of the
misclassifications, segments sharing a larger border along thembership values for the individual bands

direction of the sun azimuth angle with the potenf#iladow — min| (17)
segment are given higher membership values. The length of the pvs pms1 -

border of each segment neighboring 8teadowsegment in the Both zpax and uys are calculated for each image segment,
direction of the sun azimuth angle is calculated and normalizéWlicating the degree of membership in tBeilding class in

by the largest border length. The membership value oftine terms of the panchromatic and multispectral data, respectively.
segment; bordering aShadowsegment is calculated as

ps (si) =S < l

lmax

s MS,m] -

E. Fuzzy Logic Classification of Object Features

:0.4,0.6, 0.8) (14) The object membership values for the differ@uiilding at-
tributes,iur, s, ppan, pms, anduc 4,4 = 1,...,m, are calcu-
where/; is the length of the border shared with tBeadowseg- |ated for each segmentin the image. Segments that do not border
ment, and,,.x is the length of the largest border shared with thg potentialShadowsegment haves set to zero. The identifi-
Shadowsegment. The:s membership value is calculated forcation ofBuilding segments is accomplished with the use of a
all segments bordering a segment in the direction of the sun &#zzy logic rule base. The rule base used to calculate the mem-
imuth angle with membership in ttl#hadovclass of atleast 0.5. pership value in thBuildingandimpervious Surfacelasses for

theith segment in the image;, is defined as follows.

D. Spectral Object Features R1:

While many buildings are spectrally similar to various imper-
vious surface ground covers, some do have unique spectral sig-

natures and can be identified from spectral features calculategk2:

from the constituent pixels within a segment. The spectral fea-
tures calculated for thigh band of the pixels in the segment are
the meanm; and the variance?. A number of the buildings

in the image have very bright spectral responses, and a fuzzyr3a:

membership function quantifying the brightness in the panchro-
matic bandupan(m;) can be used to identify buildings of this

type. Herem,, is the mean value of the panchromatic band of R4:

the pixels in the segment
ppaN (myp) = S (my; 400, 550, 700) . (15)

Image segments with a large mean value in the panchromatic

band will have membership close to oneupan. The values R6:

governing the fuzzy membership function to identify a bright
response in the panchromatic band were chosen by examining

R5:

If s; Impervious Surfacenembership is high ANDB;
is approximately rectangular, then membership in
Potential Buildingis high.

If s; Impervious Surfacenembership is high AND
s; bordersShadowAND Shadowmembership of bor-
dering segment is high, then membership irPoten-
tial Building is high.

If s; Impervious Surfacenembership is high ANDB;
has bright panchromatic response, thgmembership
in classPotential Buildingis high.

If s; Impervious Surfacenembership is high ANDB;
hasBuilding multispectral response, thep member-
ship in classPotential Buildingis high.

If R1LORR2 ORR3 OR R4 is high, thens; member-
ship in classBuildingis high.

If s; Impervious Surfacenembership is high ANDB;
Building membership is NOT high, thesy member-
ship inImpervious Surfaces high.

the spectral response of typical buildings that could be identifigthere are a variety of operators in fuzzy systems that can be used
in this manner. Although these values were set manually, theyimplement the fuzzy “AND,” “OR,” and “NOT.” Thenin
could easily be calculated from training data. andmax operators are used for “AND” and “OR,” respectively,

Some buildings inthe imagery, while they do not have a brighhd the standard fuzzy compliment [25] is used for “NOT.” The
response in the panchromatic band, do have a unique spegtigby rule base is implemented as
response in the multispectral bands, allowing for discrimination
between thaBuilding andImpervious Surfacelasses for these
segments. Fuzzy membership functions for each multispectral
band are defined using the mean ; and varianceaf,m cal-
culated fromBuilding training data, whereé = 1,...,m, and

m is the number of multispectral bands. The membership value
pwms,: for the segment in each band is calculated using

(16)

pr,B (si) = min [pe 1.5 (5:) 5 1o (54)] (18)

ps,B (si) = min [pe 1.5, (8:), s (5i) s the,s (Ssaw)]  (19)

ppaN,B (8i) = min [per.s. (si), pean (si)]  (20)

HUMS,i (mb) =7 (mz‘§ a,b,c, dﬂ%f)

wherea = 1y ;—0.804 5, b = my ;—0.50¢ 4, ¢ = my; —0.304 5,

d=mys;+0.30¢;, ¢ =my; +0.50,;, andf = my; +0.80 ;. ps,B (8i) = min [pe 1.5, (54)  pvs (1)) (21)
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TABLE I
CLASSIFICATION ACCURACIES FORDIFFERENT COMBINATIONS OF OBJECTBASED FEATURES
Building Impervious Average
Feature Accuracy Surface AC.C wiacy of
Combination (%) Accuracy Building and
(%) Imp. Surf. (%)
Shape 24.9 87.4 56.2
Shadow 30.2 91.4 60.8
Pan 10.8 92.0 51.4
MS 32.0 84.4 58.2
MS + Pan 38.9 84.4 61.7
Shape + MS + Pan 549 81.0 68.0
Shadow + MS + Pan 64.5 83.8 74.2
Shape + Shadow + MS + Pan 76.1 81.0 78.6

When each of the four object features was used separately to
identify Buildingsegments, only a fraction of the buildings were
e, Building () = max{ur,p (si) correctly identified. However, when all four were used in con-
ts,B (i), wpan,s (i) ims,B (si)]  (22)  junction, 76% of theBuilding reference pixels were properly
identified, while still correctly identifying 81% of thémper-
vious Surfaceeference pixels. Table Il summarizes the effect of
using different combinations of the object features on the accu-
(23) racy of theBuilding andimpervious Surfacelassification. The
single most effective object feature for discrimination between
wherep. s(ssaw) IS the membership in thehadowclass of the theBuildingandimpervious Surfacelasses is multispectral in-
segment bordering the segment being examined in the directformation, which correctly classifies 32% of tiBaiilding ref-
of the sun azimuth angle. The result of this processing is a fuzagence pixels. ThBuilding class accuracy does not rise above
classification of the image segments, with each segment havB@p6 until at least three of the information sources are used.
membership valueg. ; in each of the eight classeRoad The results in Table Il show that all four object-based features
Building, Impervious SurfaceGrass Tree Bare Soi] Water,  contribute to the identification dBuilding segments and each
and Shadow Since a crisp classification is desired, the fuzzgrovide complimentary information. As the number of features
classification must be defuzzified to produce a single classincreased, the accuracy of thapervious Surfacelass de-
label for each image segment. Defuzzification is performemteases. This occurs because the numbbnpérvious Surface
using themax operator such that segmextis classified as the pixels that are misclassified 8slildingincreases as the number

He Impervious Surface (SL)

= min(pe1.5. (5:) , 1 = fhe,Building (54)]

classc with the highest membership value of correctly identifiedBuildingreference pixels increases. How-
s ever, the average accuracy of fBeilding andimpervious Sur-
Class(s;) = argmax {yic1 (si) - pes (si)} - (24) faceclasses increases with the number of features, increasing

the overall accuracy of the classification.
) o The confusion matrix for the object-based classification of the

F. Object-Based Fuzzy Classification Results dense urban image utilizing all four features is given in Table 11,

The object-based fuzzy classification scheme was appli€tde Roadclass is very accurate with 99% Bfoadreference
to the IKONOS image from Columbia, Missouri. The inputpixels correctly classified @&8oad The Roadclass accuracy is
to the classifier were the pixel-based fuzzy classification, amktreased by almost 11% when using the object-based classi-
the panchromatic and PS-MS images. The prototype vectfies as compared to the pixel-based classifier (see Table 1). Be-
used for training th&uilding multispectral fuzzy sets were thecause the membership values of a segment calculated from the
same used in training the pixel-based classifier. After the imapiel-based classification are based on the proportional numbers
was segmented, the object-based classification proceededfagixels of each class present in a segment, the segmentation
described above. An accuracy assessment of the resultipgprates as a majority filter [25] if the segment is dominated
classification was performed making use of reference pixdly a single class. Misclassifications between Ehalding and
that were independent of the pixels used for training. THepervious Surfacelasses are the largest source of error with
reference pixel datasets were generated via photo interpretai®¥6 of Building reference pixels misclassified &wpervious
of the PS-MS IKONOS imagery. Approximately 130 randomlyurface and 11% ofimpervious Surfaceeference pixels mis-
distributed test site polygons were manually digitized in thelassified aBBuilding. Comparing this to the pixel-based fuzzy
imagery. The dataset had 1291 training pixels and 51 368 refassifier accuracies reported in Table |, Bglding class ac-
erence pixels. Because this classification scheme was desigogdcy appears to have decreased, dropping from 84% to 76%.
for the analysis of urban areas, the reference sites used for ithehould be noted, however, that for dense urban areas, like
accuracy assessment were all drawn from dense urban atbasone shown in Fig. 1, thBuilding class accuracy reported
in the imagery. These areas had very f8are SoilandWater for the pixel-based fuzzy classifier is an overestimate as there
pixels, so no reference pixels were identified for those classéds. no Impervious Surfacelass included in that classification
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TABLE Il
CONFUSIONMATRIX FOR OBJECT-BASED CLASSIFICATION OF DENSE URBAN AREA
Road Buildin, Imp. Surf. Grass Tree
Ref, s T G Ref. Total %
Road 10164 499 826 0 0 11489 88.5
Building 0 7845 1137 0 0 8982 87.3
Imp. Surf. 86 1959 8343 0 13 10401 80.2
Grass 0 0 0 9330 0 9330 100.0
Tree 0 0 0 887 10279 11166 92.6
Total 10250 10303 10306 10217 10292 51368
% 99.2 76.1 81.0 91.3 99.9 86.4

Road
M Building
Imp. Surf.
M Grass
- M Tree
Ko™ M Bare Soil
»% P Eshadow

Fig. 6. Object-based classification of dense urban area shown in Fig. 1 usin
segmentation image shown in Fig. 4 and fuzzy-logic pixel-based classification

shown in Fig. 3.

produced a more detailed classification map by differentiating
between théBuilding and nonroadmpervious Surfacelasses

in a dense urban environment that was not possible using
pixel-based classifiers. Several information sources were used
by the object-based classifier that were not available in the
pixel-based approach. They were shape information from
the segments, segment neighborhood analysis, and spectral
statistics of the object. Using these techniques, the object-based
fuzzy logic classifier was able to identiBuildingswith a 76%
accuracy andmpervious Surfacevith an 81% accuracy. The
fuzzy logic approach presented here is flexible in that more
object features can be easily added to the rule base. Further
work is needed on the decision rules for the identification of the
Building segments to include features and rules to discriminate
between different types of buildings, such as residential,
commercial, and industrial.
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Special Issue Communications

A Physics-Based Parametric Representation of the predictions with circle-flight K- and Ka-band polarimetric radiometer

Wind Direction Signal in Sea Surface Microwave measurements by Yuedt al.[15], [16] are shown in Yueh [1] and re-
Brightness Temperatures produced in the right-hand side (8@ 36C) of Fig. 1. This includes
the measured Stokes vectdr,(71:, U, V') at three incidence angles
Eric Baum and Bruce Hauss (30°, 55°, and 65) and two radiometer frequencies (19 and 37 GHz).

Upwind corresponds to°Gazimuth. The agreement with the qualitative
o ‘ _ features of the measurements suggests that the model includes the dom-
Abstract—Polarimetric passive measurements of sea surface brightness jnant mechanisms responsible for the modulation of brightness temper-

temperature have been proposed as a means of inferring wind speed and . - . h .
direction. A limited set of circle flight measurements of the wind direction ature with wind direction. The particular method chosen by Yueh [1]

dependence has demonstrated that there may be enough independent infor- t0 implement his model ties it rigidly to the the Durden and Vesecky
mation in the polarimetric measurement to make this feasible. A predictive model wind—wave spectrum chosen to represent both the short-scale
model by Yueh reproduces the observations closely enough that the dom- and long-scale ocean roughness [17]. Tuning of the Yueh model con-
inant mechanisms are probably included. Optimizing the fit of this type — gyanis js, therefore, linked in a complicated way to the many constants
of model with a growing dataset is made difficult by the close coupling ) . ’ .

of the Yueh approach with a particular wind—wave spectral model. This associated with the model wind-wave spectrum. One of the proper-
makes it unclear as to how to parameterize the model, a prerequisite of any ties of the spectrum entering into the Yueh model is the slope variance
systematic optimization technique. Here, we present an alternate formula- of large-scale waves. In order to make the theoretical model best agree
tion, using the Baum-Irisov model to isolate the particular properties ofthe  \yith the data, Yueh increased the power-spectral-density (PSD) scaling

wavy ocean surface that affect the radiance, in the form of six discrete pa-
rameters. Iterative local linearization techniques are used to optimize the of the model spectruma() by a factor of two from that of Durden

values of these parameters with respect to any large dataset. The param- and Vesecky. This brought the variance closer into agreement with that
eters are functions of only two variables (radiometer frequency and wind from other model spectra [14], [18], [19], but it was then higher by
speed), while the effects of incidence angle, polarization, sea surface tem-ghout a factor of two than the measurements of Cox and Munk [20].
perature, salinity, and wind direction are derived from the model. Since the 15 method of adjusting the model spectrum has the unfortunate con-
data need only be binned by these two variables, a relatively small number h . . .
of on-orbit/ground-truth datasets is required to evaluate the parameters. ~ S€duence of making the interpretation of the several different effects
more obscure. For example, increasindy a factor of two has the un-
wanted effect of also increasing the well-accepted Pierson—Moskowitz
description of the longwave portion of the spectrum by a factor of two.
|. INTRODUCTION A method that pertu_rbs tht_e model s_pectrum by in_creasir?g only the high
) o wavenumber domain (which contributes the major portion of the total
A conventional two-scale description of radar back-scatter from thgype variance) and leaves the Pierson—Moskowitz domain unchanged
ocean surface includes the Bragg-resonant contribution to d'ﬁraCt'Né’quires more flexibility in the model spectrum.
scattering obtained from a small perturbation theory [3] along with & An ajternate approach that retains the spirit of the Yueh model is
Gaussian slope probability density function (pdf) to describe the effegtisoate those local and global properties of the wave spectrum that
of the unresolved tilting of the surface by waves which are significantypier into the radiance model in a way that permits them to be rep-
longer than the Bragg wavelength [4], [5]. Passive radiometry at cofssented by a discrete number of parameters. These parameters can
parable wavelengths has been modeled using a similar descriptiondy pe evaluated by any number of familiar techniques to optimize the
the effect of the unresolved tilting of the surface by waves which aggyreement with available data. Such an approach, introduced by Baum
significantly longer than the radiation wavelength, but using the spegaq |risov [2] in a study of the related problem of the modulation of
ular Fresnel relations to describe emission and scattering from the @s~rowave radiance by oceanic internal waves, will be examined here
sociated tilted facets [6], [7]. This level of modeling fails to accounf, yelation to the Yueh model. A nominal (unoptimized) evaluation of
for the resonant effects of the small-scale surface roughness. Wu gidgaum—irisov model is shown on the leff @ 180) side of Fig. 1
Fung [8] and Wentz [9] extended the modeling to include resonant gf; comparison with the Yueh model. The qualitative features are com-
fects for isotropic surface roughness. Irlilﬂl\ﬂl.[l.O] fgrther extended parable, but the modulation @, with azimuth angle is smaller than
the modeling to include the effects of anisotropic wind-roughened Syq, the data and the Yueh [1] predictions. This short communication

faces on the directional dependence of polarimetric observations. S{i describe the features of the model that simplify the process of op-
ilar modeling by Yuetet al. [11]-{13] and Yueh [1] has been appliedimizing the agreement with data.

to the description of the variation of microwave brightness temperature

with wind direction. The final Yueh modeling includes a description of

the windward/leeward asymmetry of the distribution of short waves on

long waves which is similar to that used by Donelan and Pierson [14]in

application to scatterometer measurements. Comparisons of the model Il. MODEL

Index Terms—Microwave, ocean, radiometry, wind.

The Baum-Irisov model recognizes that a two-scale problem re-
quires a spectral description of the rough ocean surface for wavenum-
Manuscript received August 15, 2002; revised May 31, 2003. This work wagrs close to that of the radiation to describe resonant (short-scale) ef-
E?géi(itcs’u%“srlggé ’\I‘EC\’;:E“';UEPS(T;?;E{FEJ‘” Space Technology's Integrated Weatfigéts. A parametric representation of this local spectral description is
The authors are with Northrop Grtl):'mman Space Technology, Redondo Bea K,I" ¢) = f(0)g(k)(K /k) ", obtained from the_PSD of the scalar
CA 90278 USA (e-mail: bruce.hauss@ngc.com). wave height spectrum( k') evaluated at the radiation wavenumiber

Digital Object Identifier 10.1109/TGRS.2003.815970 along with a local spectral slope The directionality of the short waves
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