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Abstract—In this paper, we present an object-based approach
for urban land cover classification from high-resolution multispec-
tral image data that builds upon a pixel-based fuzzy classification
approach. This combined pixel/object approach is demonstrated
using pan-sharpened multispectral IKONOS imagery from dense
urban areas. The fuzzy pixel-based classifier utilizes both spectral
and spatial information to discriminate between spectrally similar
Roadand Building urban land cover classes. After the pixel-based
classification, a technique that utilizes both spectral and spatial
heterogeneity is used to segment the image to facilitate further
object-based classification. An object-based fuzzy logic classifier
is then implemented to improve upon the pixel-based classifica-
tion by identifying one additional class in dense urban areas: non-
road, nonbuilding impervious surface. With the fuzzy pixel-based
classification as input, the object-based classifier then uses shape,
spectral, and neighborhood features to determine the final classi-
fication of the segmented image. Using these techniques, the ob-
ject-based classifier is able to identifyBuildings, Impervious Sur-
face, and Roadsin dense urban areas with 76%, 81%, and 99%
classification accuracies, respectively.

Index Terms—Fuzzy logic, high-resolution imagery, image pro-
cessing, urban land cover.

I. INTRODUCTION

W ITH THE RECENT availability of commercial high-
resolution remote sensing multispectral imagery from

sensors such as IKONOS and QuickBird, it is possible to iden-
tify small-scale features such as individual roads and buildings
in urban environments. Road network and building footprint
identification are important tasks for many applications. For
example, The National Map [1] being developed by the U.S.
Geological Survey (USGS) will provide accurate, current, and
nationally consistent digital data for the United States and
its territories. The National Map will contain high-resolution
orthorectified digital imagery, surface elevation data, several
vector feature data layers, geographic names for physical and
cultural features, and land cover classification maps. Included in
the vector data are feature layers for both the road network and
the building footprints. Potential uses for the image and feature
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data include urban growth planning, emergency response and
management, and homeland security applications. The vision
for The National Map includes near-real-time adaptation of the
map to changes. Thus, automated and semiautomated methods
for the classification of roads, buildings, and other land cover
types in the urban environment are of great interest.

Automated and semiautomated land-cover classification
and road/building extraction can be accomplished using either
pixel-based or object-based approaches. Pixel-based classifi-
cation schemes seek to identify the class of each pixel in the
imagery by comparing the-dimensional data vector for each
pixel with the prototype vector for each class. The data vectors
typically consist of a pixel’s gray-level values from multispec-
tral channels and/or textural and contextual measures that have
been computed from those channels. Textural and contextual
measures contain information about the spatial distribution of
tonal variations within a band. Object-based approaches do not
operate directly on individual pixels but on objects consisting
of many pixels that have been grouped together in a meaningful
way by image segmentation. In addition to spectral and textural
information utilized in pixel-based classification methods,
image objects also allow shape characteristics and neighbor-
hood relationships to be used for the object’s classification.
However, the success of object-based classification approaches
is very dependent on the quality of the image segmentation.

Because of the complex nature and diverse composition
of land cover types found within the urban environment, the
production of accurate urban land cover maps from high-res-
olution satellite imagery is a difficult task. Conventional
methods for pixel-based classification of multispectral re-
mote sensing imagery [2] such as parallelepiped, minimum
distance from means, and maximum likelihood only utilize
spectral information and consequently have limited success
in classifying high-resolution urban multispectral images [3].
As many urban land cover types, such as roads, buildings,
parking lots, etc., are spectrally similar, spatial information
such as texture and context must be exploited to produce more
accurate classification maps [4]. In addition to the spectral
similarity between land cover types, remote sensing images
contain mixed pixels, making it difficult to classify a pixel as
belonging to only one class. Fuzzy classification techniques
allow pixels to have membership in more than one class and
therefore better represent the imprecise nature of the data [5],
[6]. For several examples of pixel-based techniques for urban
land cover classification and/or road and building extraction
we refer the reader to [7]–[11].
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A variety of segmentation techniques have been applied to
remote sensing imagery with varying degrees of success. Seg-
mentation of remotely sensed images is a difficult problem due
to mixed pixels, spectral similarity, and the textured appear-
ance of many land-cover types. Many segmentation algorithms
are based on a region-growing approach where pixels are iter-
atively grouped into regions based on predefined similarity cri-
teria. Examples of region-growing approaches can be found in
[12]–[14]. Pixel classification and region growing were com-
bined in [15] for image segmentation and classification. A seg-
mentation and classification approach using a Markov random
field model is presented in [16]. A segmentation method for
high-resolution satellite imagery using residuals of morpholog-
ical opening and closing transforms is presented in [17], and
a neural-network-based approach for classifying urban areas
using this morphological segmentation is given in [18]. An ob-
ject-based approach for urban land cover classification is pre-
sented in [19].

The approach presented in this paper utilizes both a pixel-
based and object-based approach. Individual image pixels are
first classified using a fuzzy classifier that makes use of both
spectral and spatial information. The imagery is then segmented
and features are derived from the segmentation image. The pixel
classification is then used with additional object features to clas-
sify the image objects. By using an object-based fuzzy logic
approach in addition to the per-pixel fuzzy classification, ad-
ditional information that was not available in the pixel-based
classification can be identified and used to improve the overall
urban land cover classification result.

The remainder of this paper is organized as follows. A
pixel-based hierarchical fuzzy classification technique that
utilizes both spectral and spatial information to produce urban
land cover maps is summarized in Section II and compared
to the standard maximum-likelihood classification approach.
The image segmentation method used in this study is presented
in Section III. The segmented image is then classified by
incorporating the results of the fuzzy pixel-based classification,
shape and neighborhood information from the segmented
image, and the raw multispectral image data. This methodology
and corresponding results are presented in Section IV. Finally,
the conclusions are presented in Section V.

II. HIERARCHICAL PIXEL-BASED FUZZY CLASSIFICATION

Here we briefly summarize the hierarchical pixel-based fuzzy
classification approach and results that are used as input to the
object-based classifier described in subsequent sections. Addi-
tional details of the pixel-based fuzzy classification method-
ology and results can be found in [4] and [20]. The imagery
used for this study is an IKONOS image dataset of Columbia,
MO, acquired on April 30, 2000. IKONOS images contain four
multispectral bands with 4-m resolution (red, green, blue, and
near infrared) and a panchromatic band with 1-m resolution. In
our study, we fused the panchromatic band with the multispec-
tral bands using a color normalization method [21] to produce
a four-band pan-sharpened multispectral (PS-MS) image with
1-m resolution.

The urban land cover classes used in the pixel-based clas-
sification wereRoad, Building, Grass, Tree, Bare Soil, Water,
and Shadow. Several of the land-cover classes, such as the
Road/Building and Tree/Grass classes, are spectrally similar
and have a significant amount of spectral overlap. To combat
this problem, the fuzzy pixel-based classifier makes use of
spatial information in addition to spectral information to help
discriminate between spectrally similar classes. The entropy
texture feature, calculated using a 1010 occurrence window
[22], was found to greatly increase the discrimination between
the GrassandTreeclasses. To discriminate between theRoad
andBuildingclasses, a contextual feature measuring the spatial
dimensions of spectrally similar groups of connected pixels
was used. A simple algorithm was used to extract the length and
width of spectrally similar connected groups of pixels from the
PS-MS imagery, resulting in a two-band length-width feature
image. These two features were found to reduce the number of
misclassifications between theRoadandBuilding classes.

The hierarchical pixel-based fuzzy classifier allows indi-
vidual pairs of classes to be classified using only the spatial
features best suited for those classes. The fuzzy classifier
makes use of a maximum-likelihood classification to partition
the PS-MS data into four sets:Grass-Tree, Road-Building,
Water-Shadow, and Bare Soil. A membership value for each
class in each set is then calculated from membership functions
generated from the PS-MS data plus the appropriate spatial
measure, entropy for theGrass-Treeset and length-width for
theRoad-Buildingset. Gaussian-shaped membership functions
are used to represent both the PS-MS and entropy data, while
the membership functions for the length-width contextual
features are learned using a multilayer perceptron neural net-
work trained using the standard back-propagation algorithm.
After the calculation of membership in each of the classes, the
max operator is used for defuzzification to generate a crisp
classification.

Both maximum-likelihood classification and the fuzzy hier-
archical classifier were applied to the IKONOS dataset. An ac-
curacy assessment of the resulting classification was performed
making use of reference pixels that were independent of the
pixels used to train the classifier. The class accuracies for the
hierarchical fuzzy and maximum-likelihood classifications are
shown in Table I. There is an increase of at least 10%, and up
to 25%, in class accuracy for all classes exceptBare Soil, which
remained at 96%. An urban image subset is shown in Fig. 1 and
the corresponding maximum-likelihood and hierarchical fuzzy
classifications are shown in Figs. 2 and 3, respectively.

III. I MAGE SEGMENTATION

The fuzzy pixel-based classification approach produces
a classification map that is more accurate than the max-
imum-likelihood classifier by allowing different sets of classes
to be classified using different spatial features in a hierarchical
format. However, there are still significant classification errors
in dense urban areas (Fig. 3). In the present urban land cover
map, all man-made structures are classified as eitherRoad
or Building. In suburban areas, this scheme is appropriate as
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TABLE I
COMPARISON OFURBAN LAND COVER CLASS ACCURACIES FOR

MAXIMUM -LIKELIHOOD CLASSIFIER AND HIERARCHICAL

PIXEL-BASED FUZZY CLASSIFIER

Fig. 1. One-meter resolution panchromatic IKONOS image subset of dense
urban area.

residential homes and streets dominate the landscape. However,
in more dense urban areas, there are significant amounts of
nonroad impervious surface land cover, such as parking lots and
large sidewalks, and it is very desirable to differentiate between
these surfaces and buildings. The fuzzy classifier is unable to
correctly identify these areas because they are so spectrally
similar to both theRoadandBuilding classes. Here we adopt a
segmentation and object-based classification approach to fur-
ther refine the fuzzy pixel-based urban classification by adding
an Impervious Surfaceclass to identify nonroad, nonbuilding
impervious surface. Because this land cover class is not found
to a large extent in residential areas, and the fuzzy classifier
performs well in those areas, the rest of this paper will focus on
the classification of dense urban areas only.

The image segmentation algorithm used in this study follows
the approach given in [13] where the segmentation is accom-
plished by region merging. The segmentation is initialized with
each pixel in the image as a separate segment, and as the pro-
cedure progresses segments are merged together. The decision
to merge two segments together is based on the increase in het-
erogeneity of the new segment, , when compared to its con-
stituent segments. In order to allow a merge, the increase in het-

Fig. 2. Maximum-likelihood classification of dense urban image shown in
Fig. 1.

Fig. 3. Crisp output of fuzzy classifier for dense urban image shown in Fig. 1.

erogeneity must be less than a user set value,, called the scale
parameter. As is increased, the size of segments found in an
image will increase. The procedure stops when there are no pos-
sible merges with a value of less than . The method used
for finding two potential segments for a merge is local mutual
best fitting. For a segment, a neighboring segment is found
that has the smallest value of with . For segment , the
neighboring segment is found that has the smallest value of

with . If segment and segment are the same segment
then segment is the local mutual best fit for . If not, then seg-
ment replaces segment and segment replaces segment
and the procedure is repeated until the two local mutual best fit-
ting segments are found.

Different measures of heterogeneity can be used that take into
account both spectral and shape heterogeneity. Here, the spec-
tral variance of each multispectral channel in the segment is
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used to measure spectral heterogeneity, and the ratio of the seg-
ment’s perimeter length to the perimeter length of a square con-
taining the same number of pixels is used to measure shape het-
erogeneity. These heterogeneity measures favor segments with
minimal spectral variance and compact shape. The increase in
heterogeneity when two segments are merged is calculated as

(1)

where is the resultant heterogeneity of the merged segment
for heterogeneity measure; and are the heterogeneities
for the two segments being merged for measure; and are
the number of pixels in each of the two segments being merged;
and is the weight for each heterogeneity measure. The weight
determines the influence of each heterogeneity measure to the
total increase in heterogeneity . For the specific case of
IKONOS image data with four spectral channels for the
heterogeneity measures described above. The parameters,

, , and for are the spectral heterogeneity
measures and weights, and , , , and are the spatial
heterogeneity measures and their weight.

The region-growing segmentation algorithm was applied to
the IKONOS image and a subset of this showing the segmen-
tation of a dense urban area (Fig. 1) is shown in Fig. 4. These
results were obtained using a scale parameter
and weights for and . Although
the weight for the shape heterogeneity measure is much larger
than the weights for the spectral heterogeneity measures, shape
heterogeneity has less of an impact on than spectral het-
erogeneity because the increase in spectral heterogeneity when
two segments are merged is much larger than the increase in
shape heterogeneity. IKONOS imagery has very low contrast,
and it was found that if the image is histogram equalized before
segmentation, the segmentation results were greatly improved.
While many of the road and impervious surface regions in the
image are broken into multiple segments, the segmentation suc-
cessfully segments most of the buildings in the image as single
segments. From this segmentation image it is then possible to
use an object-based classification approach to differentiate be-
tween theBuilding andImpervious Surfaceclasses.

IV. OBJECT-BASED FUZZY CLASSIFICATION

OF THE SEGMENTED IMAGE

Once a successfully segmented image is obtained, it is pos-
sible to apply an object-based fuzzy logic classification to the
segmentation image to assign a class label to each of the seg-
ments. Because we are dealing with image segments instead of
pixels, object features such as shape and neighborhood infor-
mation are available for use in the classification that were not
available in the pixel-based fuzzy classifier. In addition, spec-
tral statistics such as the mean and variance of the pixels in each
segment can be calculated. Because the image has already been
classified on a per-pixel basis, an initial fuzzy classification of
the image segments can be performed by analyzing the classes
of the constituent pixels in each segment.

Fig. 4. Segmentation of dense urban image shown in Fig. 1.

The goal of using an object-based approach at this stage in
the processing is to improve the urban land cover classifica-
tion in dense urban areas by discriminating between buildings
and nonroad impervious surface. This was not possible with the
maximum-likelihood or the fuzzy pixel-based approaches. The
strategy employed for the discrimination between theBuilding
and Impervious Surfaceclasses is to label all pixels classified
asBuilding from the fuzzy pixel-based classification asImper-
vious Surfaceand use subsequent object-based classification
techniques to identifyBuildingsegments from within theImper-
vious Surfaceclass. The object features used to identifyBuilding
segments are the classes of the constituent pixels that make
up the segment, morphological shape information, location of
potentialBuilding segments with respect toShadowsegments,
mean panchromatic brightness values of the segment, and multi-
spectral mean and variance values from the PS-MS data in each
segment. Based on these object features, a fuzzy logic rule base
is used to discriminate betweenBuilding and Impervious Sur-
facesegments.

A. Fuzzy Membership of Image Objects From Pixel Class

Initially, fuzzy membership values in each class are calcu-
lated for the segments based on the proportion of each class
present in the segments from the per-pixel image classification.
All pixels classified asBuilding from the fuzzy pixel classifi-
cation are changed toImpervious Surfaceso the segments ini-
tially have no membership in theBuildingclass. Subsequent ob-
ject-based processing is utilized to identifyBuilding segments
from segments with a high membership value in theImpervious
Surfaceclass. An -function is used to calculate the member-
ship values of a segment in each of the classes. First, the per-
centage, , of each class present in the segment is calculated
from the classification image, where , and is the
number of classes. The membership value in each class
is calculated from the -function as

(2)
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where
for

for

for

for .

(3)

Segments consisting of pixels primarily from one class have
membership values close to one in that class and membership
values close to zero in the other classes. Segments containing
proportionately large numbers of pixels in several classes have
no membership values close to one in any of the classes, re-
flecting the ambiguity of the information extracted from the
pixel classifications in the segment. The subscriptin
indicates that these membership values were calculated from the
per-pixel classification of the image segments.

B. Morphological Shape Processing

Shape information for each segment is measured using the
morphological skeleton of the segment. Morphological skele-
tonization is a process for reducing a binary shape, in this case
a single segment, to a graph that largely preserves the extent
and connectivity of the segment while discarding the foreground
pixels in the segment. While a wide variety of skeletonizing al-
gorithms exist, all do not, however, guarantee the production
of a connected skeleton [22]. The skeletonizing algorithm used
here is based on a morphological thinning procedure and is
guaranteed to produce a connected and one-pixel-thick skeleton
[23]. The skeleton is found by cyclically applying morpholog-
ical thinning operations to the segment until no further thinning
is possible. The segment is iteratively thinned with eight struc-
turing elements during each thinning cycle. The structuring el-
ements used for the thinning are

and their 90 rotations. The ones are the foreground, and the
zeros are the background elements of the structuring elements.
During each thinning iteration, all eight structuring elements
are individually passed over the segment as a convolutional
mask, thereby removing the pixel at the center of the struc-
turing element if the pixels of the segment exactly match
the background and foreground elements of the structuring
element. This skeleton is very sensitive to small variations in
the boundary of the original segment. In order to minimize
the sensitivity to boundary variations, the original segments
are initially smoothed by performing a morphological closing
operation using a five-pixel diameter disk-structuring element.

After the skeleton has been extracted from the segment, the
endpoints of the skeleton are identified. Line segments are then
found to connect the skeleton endpoints, and the angle between
the two line segments connected to each endpoint is calculated.
This process is illustrated in Fig. 5. The angles and line segment

lengths are used as shape information to help classify the seg-
ment. Buildings are modeled as segments that are approximately
rectangular in shape and have a large membership value in the
Impervious Surfaceclass. An “approximately rectangular” seg-
ment is modeled as a segment with the following attributes:
about four endpoints with angles close to 90and large sepa-
ration, about two or less endpoints with angles much larger than
90 , and about two or less endpoints with angle much smaller
than 90 . Because the attributes of an “approximately rectan-
gular” segment are imprecise and the shapes of buildings vary,
fuzzy membership functions are used to measure how closely
the endpoint angles and the line segment lengths between the
endpoints match the different criteria.

First, three fuzzy membership values are calculated for each
skeleton endpoint angle: about 90, , larger than 90,

, and smaller than 90, , where ,
and is the number of endpoints in the segment skeleton. First,

is calculated using a-function as

(4)

where

for or
for
for
for .

(5)
Both and are calculated using-functions
as

(6)

(7)

The angle values controlling the shape of the membership func-
tions in (4), (6), and (7) where chosen so that angles matching
the description of the membership functions would have mem-
bership close to one, while angles deviating from the descrip-
tions would have membership values approaching zero.

A membership value to quantify “large separation” between
the skeleton endpoints, , , is calculated for
each line segment connecting the segment skeleton endpoints as

(8)

where is the th endpoint, and is the distance between end-
points and . “Large separation” is defined in this case as
being significantly larger than 5 m. To identify endpoints that
have both angles near 90and large separation, the fuzzy in-
tersection of and is calculated using the
operator

(9)

Fuzzy quantifiers [24] are used to calculate membership values
for fuzzy sets describing “about four” or “about two or less.”
The membership value for a segment having about four end-
points with angles close to 90and large separation is calcu-
lated as

(10)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Morphological skeleton processing for image segments shown in (a) and (b). Result of skeletonizing algorithm shown in (c) and (d) for image segments
(a) and (b), respectively. The endpoints of the skeletons have been highlighted in gray. In (e) and (f), the skeleton endpoints have been connected by line segments
and the endpoint angles identified.

The membership values for a segment having about two or less
angles much larger than 90, , and having about two or less
angles much smaller than 90, , are calculated as

(11)

(12)

Finally, the membership value for a segment being “approxi-
mately rectangular” is calculated using the fuzzy intersec-
tion of , , and with the operator,

(13)

C. Segment Neighborhood Analysis

A common feature that buildings possess is that they cast
shadows on the ground. The amount of shadows present in a

high-resolution image will vary depending on the sun azimuth
and elevation angles and the satellite sensor acquisition azimuth
angle. As the sun elevation angle decreases from 90, the length
of the shadow buildings cast along the ground grows, and as
the sun and sensor azimuth angles get further apart, the amount
of shadows visible to the sensor will increase. If shadows are
present in the image, they can be used to help identifyBuilding
segments. For the IKONOS image in this study the sun eleva-
tion angle was 61, the sun azimuth angle was 139, and the
sensor azimuth angle was 352. As a result, building shadows
are prominent as seen in the image subset shown in Fig. 1.
Also note that the shadows are for the most part well segmented
(Fig. 4), thereby allowing successful neighborhood analysis.

The process for identifying segments asBuilding using
neighborhood analysis ofShadowsegments is as follows. First,
segments with membership value of at least 0.5 in theShadow
class are identified. Then the segments bordering the potential
Shadowsegments in the direction of the sun azimuth angle are
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extracted. Segments with high membership in theImpervious
Surfaceclass that share a border with these potentialShadow
segment are likelyBuilding segments. The search direction
for segments neighboring potentialShadowsegments must be
quantized into one of eight directions because we are working
on a digital image grid. Because of this, segments that are
as much as 45 off the direction of the sun azimuth angle
will be identified as potentialBuilding segments. To avoid
misclassifications, segments sharing a larger border along the
direction of the sun azimuth angle with the potentialShadow
segment are given higher membership values. The length of the
border of each segment neighboring theShadowsegment in the
direction of the sun azimuth angle is calculated and normalized
by the largest border length. The membership value of theth
segment bordering aShadowsegment is calculated as

(14)

where is the length of the border shared with theShadowseg-
ment, and is the length of the largest border shared with the
Shadowsegment. The membership value is calculated for
all segments bordering a segment in the direction of the sun az-
imuth angle with membership in theShadowclass of at least 0.5.

D. Spectral Object Features

While many buildings are spectrally similar to various imper-
vious surface ground covers, some do have unique spectral sig-
natures and can be identified from spectral features calculated
from the constituent pixels within a segment. The spectral fea-
tures calculated for theth band of the pixels in the segment are
the mean and the variance . A number of the buildings
in the image have very bright spectral responses, and a fuzzy
membership function quantifying the brightness in the panchro-
matic band can be used to identify buildings of this
type. Here is the mean value of the panchromatic band of
the pixels in the segment

(15)

Image segments with a large mean value in the panchromatic
band will have membership close to one in . The values
governing the fuzzy membership function to identify a bright
response in the panchromatic band were chosen by examining
the spectral response of typical buildings that could be identified
in this manner. Although these values were set manually, they
could easily be calculated from training data.

Some buildings in the imagery, while they do not have a bright
response in the panchromatic band, do have a unique spectral
response in the multispectral bands, allowing for discrimination
between theBuilding andImpervious Surfaceclasses for these
segments. Fuzzy membership functions for each multispectral
band are defined using the mean and variance, , cal-
culated fromBuilding training data, where , and

is the number of multispectral bands. The membership value
for the segment in each band is calculated using

(16)

where , , ,
, , and .

The parameters controlling the shape of the membership
function were chosen such that segments with a mean value
within one-half of a standard deviation of the training data mean
will have membership greater than 0.5. The membership values

indicate the degree of similarity between a segment and
the Building training data for each multispectral band. These
values are combined to form a single fuzzy membership for the
segment by calculating the fuzzy intersection of the
membership values for the individual bands

(17)

Both and are calculated for each image segment,
indicating the degree of membership in theBuilding class in
terms of the panchromatic and multispectral data, respectively.

E. Fuzzy Logic Classification of Object Features

The object membership values for the differentBuilding at-
tributes, , , , , and , , are calcu-
lated for each segment in the image. Segments that do not border
a potentialShadowsegment have set to zero. The identifi-
cation ofBuilding segments is accomplished with the use of a
fuzzy logic rule base. The rule base used to calculate the mem-
bership value in theBuildingandImpervious Surfaceclasses for
the th segment in the image,, is defined as follows.

R1: If Impervious Surfacemembership is high AND
is approximately rectangular, then membership in
Potential Buildingis high.

R2: If Impervious Surfacemembership is high AND
bordersShadowAND Shadowmembership of bor-

dering segment is high, then membership inPoten-
tial Building is high.

R3: If Impervious Surfacemembership is high AND
has bright panchromatic response, thenmembership
in classPotential Buildingis high.

R4: If Impervious Surfacemembership is high AND
hasBuilding multispectral response, thenmember-
ship in classPotential Buildingis high.

R5: If R1 OR R2 OR R3 OR R4 is high, then member-
ship in classBuilding is high.

R6: If Impervious Surfacemembership is high AND
Building membership is NOT high, then member-
ship in Impervious Surfaceis high.

There are a variety of operators in fuzzy systems that can be used
to implement the fuzzy “AND,” “OR,” and “NOT.” The
and operators are used for “AND” and “OR,” respectively,
and the standard fuzzy compliment [25] is used for “NOT.” The
fuzzy rule base is implemented as

(18)

(19)

(20)

(21)
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TABLE II
CLASSIFICATION ACCURACIES FORDIFFERENTCOMBINATIONS OF OBJECT-BASED FEATURES

(22)

(23)

where is the membership in theShadowclass of the
segment bordering the segment being examined in the direction
of the sun azimuth angle. The result of this processing is a fuzzy
classification of the image segments, with each segment having
membership values in each of the eight classes:Road,
Building, Impervious Surface, Grass, Tree, Bare Soil, Water,
andShadow. Since a crisp classification is desired, the fuzzy
classification must be defuzzified to produce a single class
label for each image segment. Defuzzification is performed
using the operator such that segmentis classified as the
class with the highest membership value

Class (24)

F. Object-Based Fuzzy Classification Results

The object-based fuzzy classification scheme was applied
to the IKONOS image from Columbia, Missouri. The inputs
to the classifier were the pixel-based fuzzy classification, and
the panchromatic and PS-MS images. The prototype vectors
used for training theBuilding multispectral fuzzy sets were the
same used in training the pixel-based classifier. After the image
was segmented, the object-based classification proceeded as
described above. An accuracy assessment of the resulting
classification was performed making use of reference pixels
that were independent of the pixels used for training. The
reference pixel datasets were generated via photo interpretation
of the PS-MS IKONOS imagery. Approximately 130 randomly
distributed test site polygons were manually digitized in the
imagery. The dataset had 1291 training pixels and 51 368 ref-
erence pixels. Because this classification scheme was designed
for the analysis of urban areas, the reference sites used for the
accuracy assessment were all drawn from dense urban areas
in the imagery. These areas had very fewBare SoilandWater
pixels, so no reference pixels were identified for those classes.

When each of the four object features was used separately to
identifyBuildingsegments, only a fraction of the buildings were
correctly identified. However, when all four were used in con-
junction, 76% of theBuilding reference pixels were properly
identified, while still correctly identifying 81% of theImper-
vious Surfacereference pixels. Table II summarizes the effect of
using different combinations of the object features on the accu-
racy of theBuildingandImpervious Surfaceclassification. The
single most effective object feature for discrimination between
theBuildingandImpervious Surfaceclasses is multispectral in-
formation, which correctly classifies 32% of theBuilding ref-
erence pixels. TheBuilding class accuracy does not rise above
50% until at least three of the information sources are used.
The results in Table II show that all four object-based features
contribute to the identification ofBuilding segments and each
provide complimentary information. As the number of features
is increased, the accuracy of theImpervious Surfaceclass de-
creases. This occurs because the number ofImpervious Surface
pixels that are misclassified asBuilding increases as the number
of correctly identifiedBuildingreference pixels increases. How-
ever, the average accuracy of theBuilding andImpervious Sur-
faceclasses increases with the number of features, increasing
the overall accuracy of the classification.

The confusion matrix for the object-based classification of the
dense urban image utilizing all four features is given in Table III.
The Roadclass is very accurate with 99% ofRoadreference
pixels correctly classified asRoad. TheRoadclass accuracy is
increased by almost 11% when using the object-based classi-
fier as compared to the pixel-based classifier (see Table I). Be-
cause the membership values of a segment calculated from the
pixel-based classification are based on the proportional numbers
of pixels of each class present in a segment, the segmentation
operates as a majority filter [25] if the segment is dominated
by a single class. Misclassifications between theBuilding and
Impervious Surfaceclasses are the largest source of error with
19% of Building reference pixels misclassified asImpervious
Surface, and 11% ofImpervious Surfacereference pixels mis-
classified asBuilding. Comparing this to the pixel-based fuzzy
classifier accuracies reported in Table I, theBuilding class ac-
curacy appears to have decreased, dropping from 84% to 76%.
It should be noted, however, that for dense urban areas, like
the one shown in Fig. 1, theBuilding class accuracy reported
for the pixel-based fuzzy classifier is an overestimate as there
is no Impervious Surfaceclass included in that classification
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TABLE III
CONFUSIONMATRIX FOR OBJECT-BASED CLASSIFICATION OF DENSEURBAN AREA

Fig. 6. Object-based classification of dense urban area shown in Fig. 1 using
segmentation image shown in Fig. 4 and fuzzy-logic pixel-based classification
shown in Fig. 3.

scheme and nonroad, nonbuilding impervious surface makes up
a significant portion of the landscape in dense urban areas. The
object-based fuzzy classifier produces a more detailed urban
land-cover classification by including both aBuildingclass and
an Impervious Surfaceclass. The classification image gener-
ated using this technique is shown in Fig. 6. Note the significant
improvement in both theRoadandBuilding classes relative to
the maximum-likelihood and pixel-based fuzzy classifier results
shown in Figs. 2 and 3, respectively, for the same dense urban
area.

V. CONCLUSION

In this paper we presented a combined fuzzy pixel-based
and object-based approach for classification of urban land
cover from high-resolution multispectral image data. First a
pixel-based hierarchical fuzzy classifier was described that uti-
lizes both spectral and spatial information to classify individual
image pixels. The fuzzy classifier improved the classification
accuracies over the maximum-likelihood classification by 10%
to 25%. Next, a multiresolution segmentation technique that
utilized both spectral and spatial heterogeneity was used to seg-
ment the image to facilitate further object-based classification.
Using an object-based fuzzy logic classification approach, we

produced a more detailed classification map by differentiating
between theBuilding and nonroadImpervious Surfaceclasses
in a dense urban environment that was not possible using
pixel-based classifiers. Several information sources were used
by the object-based classifier that were not available in the
pixel-based approach. They were shape information from
the segments, segment neighborhood analysis, and spectral
statistics of the object. Using these techniques, the object-based
fuzzy logic classifier was able to identifyBuildingswith a 76%
accuracy andImpervious Surfacewith an 81% accuracy. The
fuzzy logic approach presented here is flexible in that more
object features can be easily added to the rule base. Further
work is needed on the decision rules for the identification of the
Building segments to include features and rules to discriminate
between different types of buildings, such as residential,
commercial, and industrial.
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A Physics-Based Parametric Representation of the
Wind Direction Signal in Sea Surface Microwave

Brightness Temperatures

Eric Baum and Bruce Hauss

Abstract—Polarimetric passive measurements of sea surface brightness
temperature have been proposed as a means of inferring wind speed and
direction. A limited set of circle flight measurements of the wind direction
dependence has demonstrated that there may be enough independent infor-
mation in the polarimetric measurement to make this feasible. A predictive
model by Yueh reproduces the observations closely enough that the dom-
inant mechanisms are probably included. Optimizing the fit of this type
of model with a growing dataset is made difficult by the close coupling
of the Yueh approach with a particular wind–wave spectral model. This
makes it unclear as to how to parameterize the model, a prerequisite of any
systematic optimization technique. Here, we present an alternate formula-
tion, using the Baum–Irisov model to isolate the particular properties of the
wavy ocean surface that affect the radiance, in the form of six discrete pa-
rameters. Iterative local linearization techniques are used to optimize the
values of these parameters with respect to any large dataset. The param-
eters are functions of only two variables (radiometer frequency and wind
speed), while the effects of incidence angle, polarization, sea surface tem-
perature, salinity, and wind direction are derived from the model. Since the
data need only be binned by these two variables, a relatively small number
of on-orbit/ground-truth datasets is required to evaluate the parameters.

Index Terms—Microwave, ocean, radiometry, wind.

I. INTRODUCTION

A conventional two-scale description of radar back-scatter from the
ocean surface includes the Bragg-resonant contribution to diffractive
scattering obtained from a small perturbation theory [3] along with a
Gaussian slope probability density function (pdf) to describe the effect
of the unresolved tilting of the surface by waves which are significantly
longer than the Bragg wavelength [4], [5]. Passive radiometry at com-
parable wavelengths has been modeled using a similar description of
the effect of the unresolved tilting of the surface by waves which are
significantly longer than the radiation wavelength, but using the spec-
ular Fresnel relations to describe emission and scattering from the as-
sociated tilted facets [6], [7]. This level of modeling fails to account
for the resonant effects of the small-scale surface roughness. Wu and
Fung [8] and Wentz [9] extended the modeling to include resonant ef-
fects for isotropic surface roughness. Irisovet al.[10] further extended
the modeling to include the effects of anisotropic wind-roughened sur-
faces on the directional dependence of polarimetric observations. Sim-
ilar modeling by Yuehet al. [11]–[13] and Yueh [1] has been applied
to the description of the variation of microwave brightness temperature
with wind direction. The final Yueh modeling includes a description of
the windward/leeward asymmetry of the distribution of short waves on
long waves which is similar to that used by Donelan and Pierson [14] in
application to scatterometer measurements. Comparisons of the model
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predictions with circle-flight K- and Ka-band polarimetric radiometer
measurements by Yuehet al. [15], [16] are shown in Yueh [1] and re-
produced in the right-hand side (180� to 360�) of Fig. 1. This includes
the measured Stokes vector (Tv ; Th; U; V ) at three incidence angles
(30�, 55�, and 65�) and two radiometer frequencies (19 and 37 GHz).
Upwind corresponds to 0� azimuth. The agreement with the qualitative
features of the measurements suggests that the model includes the dom-
inant mechanisms responsible for the modulation of brightness temper-
ature with wind direction. The particular method chosen by Yueh [1]
to implement his model ties it rigidly to the the Durden and Vesecky
model wind–wave spectrum chosen to represent both the short-scale
and long-scale ocean roughness [17]. Tuning of the Yueh model con-
stants is, therefore, linked in a complicated way to the many constants
associated with the model wind–wave spectrum. One of the proper-
ties of the spectrum entering into the Yueh model is the slope variance
of large-scale waves. In order to make the theoretical model best agree
with the data, Yueh increased the power-spectral-density (PSD) scaling
of the model spectrum (a0) by a factor of two from that of Durden
and Vesecky. This brought the variance closer into agreement with that
from other model spectra [14], [18], [19], but it was then higher by
about a factor of two than the measurements of Cox and Munk [20].
This method of adjusting the model spectrum has the unfortunate con-
sequence of making the interpretation of the several different effects
more obscure. For example, increasinga0 by a factor of two has the un-
wanted effect of also increasing the well-accepted Pierson–Moskowitz
description of the longwave portion of the spectrum by a factor of two.
A method that perturbs the model spectrum by increasing only the high
wavenumber domain (which contributes the major portion of the total
slope variance) and leaves the Pierson–Moskowitz domain unchanged
requires more flexibility in the model spectrum.

An alternate approach that retains the spirit of the Yueh model is
to isolate those local and global properties of the wave spectrum that
enter into the radiance model in a way that permits them to be rep-
resented by a discrete number of parameters. These parameters can
then be evaluated by any number of familiar techniques to optimize the
agreement with available data. Such an approach, introduced by Baum
and Irisov [2] in a study of the related problem of the modulation of
microwave radiance by oceanic internal waves, will be examined here
in relation to the Yueh model. A nominal (unoptimized) evaluation of
the Baum–Irisov model is shown on the left (0� to 180�) side of Fig. 1
for comparison with the Yueh model. The qualitative features are com-
parable, but the modulation ofTh with azimuth angle is smaller than
both the data and the Yueh [1] predictions. This short communication
will describe the features of the model that simplify the process of op-
timizing the agreement with data.

II. M ODEL

The Baum–Irisov model recognizes that a two-scale problem re-
quires a spectral description of the rough ocean surface for wavenum-
bers close to that of the radiation to describe resonant (short-scale) ef-
fects. A parametric representation of this local spectral description is
G(K;�) = f(�)g(k)(K=k)�n, obtained from the PSD of the scalar
wave height spectrumg(K) evaluated at the radiation wavenumberk,
along with a local spectral slopen. The directionality of the short waves
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