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Abstract—n this paper, we investigate the usefulness of urban land cover maps include environmental planning and
high-resolution multispectral satellite imagery for classification of assessment, land use change detection/attribution, utility and

urban and suburban areas and present a fuzzy logic methodology yansportation planning, infrastructure inventory, stormwater
to improve classification accuracy. Panchromatic and multispec- | ino/miticati d wat lit t
tral IKONOS image datasets are analyzed for two urban locations planning/mitigation, anad water quality management.

in this study. Both multispectral and pan-sharpened multispectral Analysis of urban areas using medium-resolution remote
images are first classified using a traditional maximum-likelihood sensing imagery (e.g., Landsat) has typically focused on the
approach. Maximum-likelihood classification accuracies between jdentification of built-up areas or discrimination between

79% to 87% were achieved with significant misclassification egjgential, industrial, and commercial zones. However, with

error between the spectrally similar Road and Building urban th ¢ ilability of ial high luti tellit
land cover types. A number of different texture measures were € recent availability of commercial high-resolution sateliite

investigated, and a length—-width contextual measure is developed. Multispectral imagery from sensors such as IKONOS and
These spatial measures were used to increase the discrimina-QuickBird, it is now possible to produce more detailed urban
tion between spectrally similar classes, thereby yielding higher |and cover maps by identifying features such as individual
accuracy urban land cover maps. Finally, a hierarchical fuzzy o445 and buildings in the urban environment. High-resolution

classification approach that makes use of both spectral and spatial dat b h b | ified usi hological
information is presented. This technique is shown to increase the ata over urban areas have been classilied using morphologica

discrimination between spectrally similar urban land cover classes profiles [3] and neural network teghniques [4]: In additiQn,
and results in classification accuracies that are 8% to 11% larger various methods for road extraction from high-resolution

than those from the traditional maximum-likelihood approach. satellite imagery and aerial photography have been investigated
Index Terms—Fuzzy classification, high-resolution satellite im-  [5]-{7]. Studies have been conducted on the use of texture
agery, urban remote sensing. and contextual information in the classification of high-reso-

lution satellite imagery of urban areas [8], [9]. In addition to
pixel-based approaches, high-resolution urban imagery can be
analyzed using segmentation and object-based classification
U RBAN and economic growth places a heavy demanghproaches [10], [11]. In [12], a supervised fuzzy classification
on local governments to seek better planning and MaRethod for Landsat Thematic Mapper (TM) data is presented.
agement approaches to deal with the numerous problemgecause of the complex nature and diverse composition of
associated with increasing urbanization. Timely and accurgdgd cover types found within the urban environment, the pro-
information products are required by federal, state, and loGflction of urban land cover maps from high-resolution satellite
government agencies and officials to make effective deginagery is a difficult task. The materials found in the urban en-
sions regarding a wide variety of issues affecting the urbgtonment include concrete, asphalt, metal, plastic, glass, shin-
environment. High-resolution commercial satellite imagenyjes, water, grass, trees, shrubs, and soil, to list just a few. More-
has been shown to be a cost-effective alternative to aefigler, many of these materials are spectrally similar, and this
photography for the generation of digital image basemapsds to problems in automated or semiautomated image clas-
[1], which are digital images with map-quality positionakification of these areas. In addition, these materials form very
accuracies. Information products derived from positional%mmex arrangements in the imagery such as housing develop-
accurate high-resolution satellite imagery, such as land coyggnts, transportation networks, industrial facilities, and com-
maps, can be easily integrated into existing state and loggércial/recreational areas. Conventional methods for classifica-
government GIS databases and utilized to aid officials [13] of multispectral remote sensing imagery such as paral-
planning and decision making processes [2]. Applications fRfiepiped, minimum distance from means, and maximum like-
lihood, only utilize spectral information and consequently have
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can only be classified as one class. However, remote sensing &
ages contain mixed pixels and many land cover types have s
ilar spectral signatures. These problems are particularly se
in urban environments. Fuzzy classification techniques allg
pixels to have membership in more than one class and the
fore better represent the imprecise nature of the data. In tj
paper, a hierarchical fuzzy classification method that incorp
rates both spectral and spatial information is presented. Tgs
technique produces a substantial increase in classification g
curacy of urban land cover maps compared to the traditiorg
maximum-likelihood classification approach.
The remainder of this paper is organized as follows. The &3
curacy and limitations of maximum-likelihood classification og
high-resolution satellite imagery over urban and suburban aré:
are presented in Section Il. In addition to spectral data, seve
types of spatial information can be extracted from the high-req
lution imagery. These are investigated and corresponding resg
are presented in Section IIl. In Section IV, we describe a hig
archical fuzzy classifier that utilizes both spectral and spat
information to produce more accurate urban land cover ma
Finally, the conclusions are presented in Section V.

Il. CLASSIFICATION OF HIGH-RESOLUTION
SATELLITE IMAGERY

We first investigated the effectiveness of high-resolutiokig.1. One-meter resolution panchromatic IKONOS image of Columbia, MO.
satellite imagery for classification of urban and suburban scenes
using a traditional maximum-likelihood classifier. The imagery TABLE |
used for this study was acquired by the IKONOS commercialMAXIMUM LIKELIHOOD CLASSIFICATION RESULTS FOR4-m MSAND 1-m
remote sensing satellite and consists of four multispectral (MS) PS-MS MAGE DATASETS

bands with 4-m resolution and a single panchromatic (PAN) ) Overall

band with 1-m resolution. The four MS bands collect data 1;1;;1 Image Accuracy Colzggizm
at the red, green, blue, and near-infrared wavelengths, and (%)

the data in each band is stored with 11-b quantization. Two 4-m  Columbia 78.6 0.731
IKONOS image datasets are used in this study: an image of ‘1‘2 Si(r)ilr]ilg]}itzﬁi 2(5)'?/ g'g?z
Columbia, MO acquired on April 30, 2000, and an image of I-m  Springfield 87.4 0.840

Springfield, MO acquired on September 17, 2000. Both image
datasets include a variety of urban and suburban land cover
types making them ideal for this study. Two separate datasetsnpared to medium-resolution multispectral image data (e.g.,
were used to provide multiple evaluations of the algorithmsandsat). Accordingly, the identification of fine-scale urban
presented in this paper and to ensure that the algorithms wigatures (residential houses, individual trees, etc.) in the image
not so highly specialized as to be applicable to only a singlan be achieved. The urban land cover classes used in this
dataset. study wereRoad, Building, Grass, Tree, Bare Soil, Watand

The Columbiaimage is shownin Fig. 1. The IKONOS imageShadowTheShadowclass is required to minimize the problem
went through several preprocessing steps before classificatioh.shaded pixels in the urban environment, e.g., building
First, the images were orthorectified to increase the planar acehadows, being classified &ater An accuracy assessment
racy from 25 m RMS to approximately 3 m RMS. Map-qualityf the resulting classification was performed making use of
positional accuracy is needed so that the image data and deriederence pixels that were independent of the pixels used to
tive products (e.g., land cover map) can be effectively incatrain the classifier. The reference pixel datasets were generated
porated into GIS databases [1]. After orthorectification, a coleta photo interpretation of the 1-m PS-MS IKONOS imagery.
normalization method [14] was used to fuse the PAN data witkpproximately 175 randomly distributed test site polygons
the four MS bands to produce a four-band pan-sharpened muere manually digitized in the imagery. The Columbia dataset
tispectral (PS-MS) image with 1-m resolution. The PS-MS inkiad 9410 training pixels and 80895 reference pixels, and the
agery retained the 11-b quantization of the original data. Springfield dataset had 13602 training pixels and 184056

Both the 4-m MS and 1-m PS-MS image datasets wereference pixels. The same training and reference pixel sets
classified using the traditional supervised maximum-likelihoogere used for all classification results presented in this paper.
approach. A more detailed classification of the urban land- Supervised maximume-likelihood classifications were pro-
scape is possible from the high-resolution IKONOS imageduced for both the 4-m MS and the 1-m PS-MS images



1922 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 9, SEPTEMBER 2003

TABLE I
CONFUSIONMATRIX FOR MAXIMUM LIKELIHOOD CLASSIFICATION OF 1-m PS-MS ©LUMBIA IMAGE DATASET

Road Building Grass Tree Bare Soil  Water Total %

Ref. Ref. Ref. Ref. Ref. Ref. °

Road 8109 2682 1 0 316 23 11,131 73

Building 3020 10,850 53 5 55 299 | 14,282 76

Grass 107 23 22,567 1225 0 0 23,922 94

Tree 54 57 4179 10,055 0 0 14,345 70

Bare Soil 177 49 10 0 8864 0 9100 97

Water 5 537 0 0 0 4961 5503 90

Shadow 15 712 0 0 0 1885 | 2612
Total 11,487 14910 26,810 11,285 9235 7168 | 80,895
% 71 73 84 89 96 69

from both study locations. The confusion matrix, the overall TheRoadandBuildingclasses in both images and tBeass
accuracy, and the Kappa coefficient of agreement [15]-[1@hd Treeclasses in the Columbia image are spectrally similar
were computed for each classification. The overall accuraand have a significant amount of spectral overlap. This is the pri-
was computed by dividing the number of correctly classifieshary reason for the large number of misclassifications between
reference pixels by the total number of reference pixelhese classes. Traditional supervised classification methods that
The Kappa coefficient adjusts the overall accuracy value lmply take into account spectral information, such as maximum
subtracting the estimated contribution of chance agreemdkelihood, are unable to differentiate between these classes with
between classified pixels and reference pixels [18]. The overalhigh degree of accuracy. Methods that utilize spatial informa-
accuracies and Kappa coefficients are presented in Table |. Tio® in addition to spectral information are needed to produce
overall accuracies for the Springfield image were higher thamore accurate classifications of high-resolution image data over
those corresponding to the Columbia image for both the 4umban areas.

MS and the 1-m PS-MS datasets. This is most likely due to the

presence of a small amount of haze in the Columbia image. Ill. SPATIAL INFORMATION EXTRACTION

The classification accuracies and Kappa coefficients of the 1-m
PS-MS data are several percent higher than those of the Ag
MS data for both datasets, indicating that the pan-sharpe
images produced by the color normalization method can Lﬁ
effectively used for classification purposes.

The confusion matrix for the PS-MS classification of th
Columbia image is shown in Table Il. The largest sour
of error is due to misclassifications between tRead and
Building classes, with 26% of théRoad reference pixels
classified asBuilding and 18% of theBuilding reference

Spatial features such as texture contain information about the
tial distribution of tonal variations within a band and are typ-
ly derived from windows of data surrounding the area being

alyzed [19]. By combining spatial information and spectral

information, the amount of overlap between classes can be de-

%reased, thereby yielding higher classification accuracies and

Sore accurate urban land cover maps. For example, while the

Grassand Tree classes can have similar spectral signatures,

areas in the image covered with grass appear much more ho-

: e ; ._mogeneous than tree-covered areas. This difference in homo-

pixels f:lassmed aRoad The other major source of error ISgeneity between regions can be used to decrease the confusion

confusion betweef‘ th@rassa_n_dTreeclasses, with 16% of the between the classes. This is illustrated in Fig. 3, where an en-

Grassrefere.nce plxels.(.:Iassmed dsee anq .11% of thelree tropy texture measure is used to differentiate betweefsthss

reference pixels (_:Iassmed aGra_s§ In addition, 26% of the andTreeland cover types.

Waterreference pixels are classified 8hadow Suburban and A variety of texture measures utilizing different window sizes

urban 'mage subsets of 'the .maX|mum-I|keI|h.ood cIa;sﬁmanere evaluated to test the usefulness of different texture mea-
for Columbia are shown in Fig. 2. The confusion matrix for th

PS-MS classificati f the Sprinafield i h il §ures. Each texture image was then added to the four PS-MS
> classilication of the springhield Image shows SIMIgL, 4 a5 an extra channel of data and then classified using max-
misclassification characteristics. The confusion matrix for the | . i alihood classification. The following occurrence tex-

Springfield PS-MS classification is shown in Table III. As wit ure measures were evaluated: entropy, data range, skewness,

the Columbia PS-MS classification, the largest source of €IMhd variance [20]. The texture features were calculated from

in the Springfield classification is caused by misclaszsificatioqﬁe normalized arav-level histoaram(=.). of the pixel windo
between thdRoadandBuilding classes, with 30% of thRoad w(z) whelrfao <gi z LV_ 1 Iand% isﬁ(ﬁé);lumbel!ocl)); grg;/lev\(levls

reference p!xels class!f!ed Silding a_nd 31% of th.efsmlfjmg in the image. The texture measures were calculated as follows:
reference pixels classified &bad Unlike the classification of

Columbia image, there is virtually no confusion between the L-1

GrassandTreeclasses in the Springfield image. There is more entropy= — > _ p(z)logs[p(z:)] 1)
spectral variation between these classes in the Springfield data =0 )

because the image was acquired in the early fall time period, data range= max[w(z;)] — min[w(z;)] @)
resulting in less confusion between the classes. In addition, ) ) L-1 )

24% of theWaterreference pixels are classified @sadow variance= 0% = Y _(zi — m)*p(zi) 3)

=0
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Road
» M Building
Grass
B Tree
M Bare Sail
B water
M shadow

(d)

Fig. 2. Maximum-likelihood classification for (b) suburban area, (d) urban area from the Columbia, MO image subsets shown in (a) and (c), yeSpéetivel
the significant misclassifications between fReadandBuilding land cover types.

1 L=! 5 reason, a 20-m-wide window was the largest texture kernel size
skewness= — Z(zi —m)°p(zi) (4)  tested. While there were areas in the image, such as fields and
=0 large tree covered areas, that were much larger than this, the

wherem is the mean value of the gray levels in the window, i.etexture measures needed to be applicable to urban and suburban
areas where the objects of interest are on the order of 10—20 min
size. All of the texture measures discussed here were extracted

m= zip(zi). ®) from the panchromatic band of the IKONOS image datasets.

! The average classification accuracy for RmadandBuilding

Each texture measure was calculated with-a% 10x 10, and classes and therassandTreeclasses from the Columbia image
20 x 20 pixel window. The window sizes tested were chosen te shown in Table IV. The first row in the table is the average
be no larger than the objects of interest in the image from whiclassification accuracies from the maximum-likelihood classi-
the texture measures were to extract information from. For tHatation of the PS-MS data with no added texture measures. The

L

|
—

Il
=)
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TABLE Il
CONFUSIONMATRIX FOR MAXIMUM LIKELIHOOD CLASSIFICATION OF 1-m PS-MS 8RINGFIELD IMAGE DATASET

Road Building Grass Tree Bare Soil  Water

Ref. Ref. Ref. Ref. Ref. Ref. Total %
Road 21,219 10,667 57 20 33 0 31,996 66
Building 8968 24,165 82 4 1390 0 34,609 70
Grass 54 16 48,753 47 1 0 48,871 100
Tree 15 2 249 49,448 0 206 49,920 99
Bare Soil 0 5 0 0 13,266 0 13,271 100
Water 5 0 0 0 0 4009 4014 100
Shadow 9 0 0 0 0 1366 1375
Total 30,270 34,855 49,141 49,519 14,690 5581 | 184,056
% 70 69 99 100 90 72

entropy texture measures using both ax100 and a 2 20 length and the minimum value is stored as the width. The output
pixel window have a significant effect on the average classiif the algorithm is a two-band length—width feature image.
cation accuracy of th&rassandTreeclasses, where the classi- Three parameters control the length—-width extraction
fication accuracy of those classes increases approximately 18forithm: the number of search direction¥y;,, the max-

in both cases. Although the classification accuracies of both tgum length, L.y, and the similarity threshold] Hgp. The

10x 10 and 20x 20 entropy texture measures were essentiallymilarity threshold?' Hgp, has the largest effect on the perfor-
the same, the 18 10 window was chosen to help reduce edggance of the algorithm. The algorithm extracts accurate length
effects associated with large texture windows [21]. Several ghd width values ifl" Hep is set to between 2.5 to 4.0 times
the other texture measures show moderate increase in the aged-average standard deviation of the Euclidean distance of
racy of these classes, but not as large as the increase found Wh@hraining pixel data from the class means. The length—width
using the entropy texture measure. Most of the texture measu@gaction algorithm is summarized by the psuedocode shown
actually cecrease the average classification accuracies for thg Fig. 4. we found that if the data were median filtered before
RoadandBuildingclasses, and the best result (entropy20)  the length—width algorithm was applied, then the length and
only yields a 1.5% increase over the PS-MS classification witlidth measurements were more accurate representations of
no texture features. the data. The median filter was chosen because of its inherent

It was found in the previous section that the largest sourggoperties of reducing tonal variations while retaining edges
of confusion in the classification of the high-resolution urbafp2]. A 7 x 7 window for the median filter was found to work
scenes is between tiigoadandBuilding classes. Thus, a spa-well. The kernel size for the median filter was chosen to be
tial measure that can increase discrimination between these &@qier than the desired objects being analyzed for contextual
classes is highly desirable. One such spatial measure is to ig¥ormation (i.e., roads and buildings). However, thex 7
amine the context of each pixel, measuring the spatial dimegndow was large enough so that extremely fine-scale features
sions of groups of spectrally similar connected pixels. Roag@$the image, such as automobiles and linework on the roads,
tend to consist of groups of spectrally similar pixels orienteglere removed. Note that the effect of the median filtering is
along a long narrow line. Buildings, on the other hand, usualjot the same as simply working with lower resolution imagery,
consist of a group of pixels with a similar spectral response ofs the edges between objects of interest are still preserved at
ented in a more rectangular or square shape. the 1-m resolution.

A simple algorithm was developed to extract the length and The outputs of the length—width extraction algorithm applied
width of spectrally similar connected groups of pixels from thgy poth an urban and a suburban scene are shown in Fig. 5.
PS-MS imagery. The algorithm calculates a length and widfthe |ength values are displayed in the red channel of an RGB
value for each pixel of interest in the image. These values afBplay and width is displayed in the blue and the green chan-
found by searching along a predetermined number of equal¥|s. Vegetation pixels have been masked out so the effect of the
spaced lines radiating from the central pixel. The Euclidean diéngth—width measure on road and building pixels can be more

tance clearly seen. Pixels that have large length values and small width
dim 1 values, such as road pixels, appear more red in color, while

Dep = (Z (25 — a:’?’)Q) ©) p!xels with similar length 'and width values, such as building
P ' ¢ pixels, appear more blue in color. The parameters used for the

length—width extraction wereVy;, = 36 (10° azimuth sam-

is calculated between the spectrum of the central pixel and hleg), L. = 200 pixels, andl’Hgp = 50. This algorithm
spectrum of each new pixel, whetlém is the dimensionality was applied to the Columbia image and the resulting two bands
of the datayz$ is the value of théth band of the central pixel; of data were added to the four PS-MS bands and classified using
andz? is the value of theth band of the pixel in question. If maximum-likelihood classification. The average classification
that value is less than a similarity threshold, the search continaesuracy for theRoad and Building classes increased by 5%
until the maximum allowed length is reached. Once all of the divhen the length—width features were added. However, the av-
rections have been searched, the maximum value is stored asttage classification accuracy for tBeassandTreeclasses &
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© (d)

Fig. 3. Effect of entropy texture measure on classificationGrass and Tree classes. (a) Image subset. (b) XQ0 entropy texture measure. (c)
Maximum-likelihood classification of (a) (light grayz Grass dark gray= Treé). (d) Maximum-likelihood classification of PS-MS dataentropy.

creased by 9%. Finally, after inspection of the distributions ofsifications between the spectrally similRoad/Buildingand

the length—width measures, it was found that they were not ndree/Grassclasses. However, while one spatial feature might

mally distributed and the maximume-likelihood classification ifncrease the classification accuracy between one set of classes,

therefore not the best choice for classification using this type ibfmight decrease the accuracy between another set using tra-

spatial feature. ditional classification methods. For example, the length—width

contextual measure discussed in the previous section increased

the maximume-likelihood classification accuracy betw&srad

and Building by 5%, but the classification accuracy between
Spatial measures extracted from the high-resolutidgbrassandTreedecreased by 9%. The entropy texture measure

multispectral imagery can help decrease the number of misclagreased th&rassand Tree maximum-likelihood classifica-

IV. HIERARCHICAL Fuzzy CLASSIFICATION APPROACH
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TABLE IV
AVERAGE MAXIMUM LIKELIHOOD CLASSIFICATION ACCURACIESWITH TEXTURE INFORMATION INCLUDED FOR1-m PS-MS ©LUMBIA IMAGE DATASET
Texture Window Road — Building Grass — Tree

Feature Size Avg. Accuracy (%)  Avg. Accuracy (%)
None NA 71.4 86.6
Entropy 5x5 70.4 87.8
Data Range 5x5 68.2 90.1
Skewness 5x5 70.7 90.7
Variance 5x5 65.7 91.4
Entropy 10x 10 71.8 97.5
Data Range 10x 10 69.1 89.9
Skewness 10x 10 71.1 92.6
Variance 10x 10 68.0 91.5
Entropy 20x 20 72.9 97.3
Data Range 20x 20 66.0 95.8
Skewness 20x 20 69.9 84.3
Variance 20x 20 70.2 87.8
Length-Width NA 76.2 77.9

for each pixel i
for direction j = 1 to Ny,
counter[j] =0

k=1

data_matrix = spectrum of each pixel along direction j

repeat
Dgp = Euclidean distance between pixel i and data_matrix[/]
k=k+1

counter[j] = counter[j] + 1
until (counter[j] > L) or (Dgp > THgp)
endfor
length[pixel i/] = max{counter}
width[pixel #]] = min{counter}
endfor

Fig. 4. Psuedocode for length—width extraction algorithm.

tion accuracy by 10%, but this had almost no effectRoad in a defuzzification step using the max operator. A block dia-
andBuilding classification accuracy (Table 1V). gram of this hierarchical fuzzy classification approach is shown
Ideally, different classes should only be classified usirig Fig. 6. The membership values for each class are calculated
the spatial measures best suited for those classes. Towargarallel, so the pair classification order has no influence on
that end, we developed a fuzzy classification scheme thhe final outcome. This differs from a decision-tree approach
allows the image to be hierarchically classified using differemthere the pair-classification branching is done sequentially
spatial measures for different sets of classes. First, the maxrd the order of the pair branching is critical in the final
imum-likelihood classification of the PS-MS data is used tolassification outcome. Once divided into the initial sets, pixels
split the data into four initial set$Grass-Tree, Road-Building, can only be classified as one of the set members to which
Water-Shadowand Bare Soil A membership value for eachthey belong. This does not have a negative impact on classifier
class in each set is then calculated from membership functiggerformance as the sets are chosen to include the classes that
generated from the PS-MS data plus the appropriate spatiale the largest amount of spectral confusion.
measure. The 18 10 entropy texture measure is used for the
Grass-Treeset, and the length—width contextual measure | o ;
used for both theRoad-Buildingand theWater-Shadovsets. R Fuzzy Classifier Implementation
As the classification accuracy &are Soilis already high and  As in [12], the membership functions used for the PS-MS
no spatial measures were found to increase the classificataord entropy data are Gaussian shaped functions. The member-
accuracy of this class, only the PS-MS data is used to genersitip functions are defined with two parameters: the mean vector
the membership value for thgare Soilclass. After membership p. and covariance matri¥,., which are calculated from the
values are calculated for each class in the set, the result iganing data. The mean vectgy, is used to represent the ideal
fuzzy classification with each input pixel having a membershipixel in classC. If an input pixelz has the valugs,., then it will
value in each class in the set. A crisp classification is generateglve a membership value of 1.0, andrasoves away fron,.
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z contains only the PS-MS data. Once the membership value in
each class has been calculated, a primitive fuzzy membership
vector is formed foe

!

Fys (7) = [, Y@, 35@)] ®

whereN is the number of classes in the set. After the member-
ship values for the PS-MS and entropy data have been calculated
for each class, they are rescaled to normalize the membership
values, forming the fuzzy membership vector

Fus (@) = [5G, 25, . 3@ @
where
M5 ()

)= X oy a0

This normalization takes place within all classes. The vector
F\s(z) represents the degree to whielbelongs to each class
in terms of the PS-MS and entropy data.

A second membership value is calculated for the pixels in the
Road-Buildingand Water-Shadowvsets using the length—width
contextual measure. The length—width values are not normally
distributed, so Gaussian-shaped functions ateappropriate
for the membership functions. Instead, the membership func-
tions are learned using a multilayer perceptron neural network.
The use of a neural network allows the membership functions
to be learned from training data without any prior assumptions
about the distribution of the data. The multilayer perceptron was
chosen for its ability to approximate arbitrarily shaped functions
and because of its ease in training. The multilayer perceptron is
trained using the standard back-propagation algorithm [23].

The membership functions for all the data could have
been generated using the multilayer perceptron, however this
approach was not chosen because the spectral and entropy
data were normally distributed and best represented with
Gaussian shaped functions. After the neural network has
learned the membership functions from the training data of
the length—width contextual data, membership values in the
Road-Building classes and thaNater-Shadowclasses are
found for the pixels in those partitions resulting in a fuzzy
membership vector

(b)

— T

LW -\ LW Lw
Fig. 5. Length—width contextual measures of (a) suburban subset shown in Frw= [f1 (z), [ (z), ... fN («’17)} (11)
Fig. 2(a), and (b) urban subset shown in Fig. 2(c).

where ffW(z) is the membership value of pixet in the
length—width membership function for clags The vector
g w(z) represents the degree to whighbelongs to each
class in terms of the length—width contextual measure. Because
the length—width contextual measure contains no information
N L L useful for the characterization of tiégrass, TreeandBare Soil
f6"5(w)=exp (—0-5 (o —pe)t 35t (w - uc)) (7)  classesy™WV(z) is set to zero for those classes.

At this point each pixel has two fuzzy membership vectors,
and this is a scalar value representing the degree to which inplifs(x) and FLw (x). These two vectors are combined using a
vectorz belongs to clas€’. In the case of th&rass-Treeset,z  fuzzy union max operator [24] to produce a single fuzzy mem-
is a five-dimensional vector containing the PS-MS data and thership vector
10 x 10 entropy texture measure. For the other three class sets .
(Road-Building, Water-ShadowndBare Soi) the input vector F(z)=[fi(z), f2(z),..., fn(z)] (12)

the membership value decreases. The covariance matgrv-
erns the width of the function. The membership value in cla
C for the PS-MS and entropy data is calculated as
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Input Data
Partition with Maximum Likelihood
Classification of PS-MS Data
J
¢ ‘ | —
Grass-Tree Road-Building Water-Shadow Bare Soil
A A l Y
Calculate Calculate Calculate Calculate
membership membership membership membership
values in values in Road values in Water value in Bare
Grass and and Building and Shadow Soil class
Tree classes classes classes
f Grass f Tree _rBuib!ing f Road f Water .f.g’hadow .fBam Soil

L |
l A A A A A A

Defuzzificaton with Max Operator

A
Crisp Classification

Fig. 6. Block diagram of hierarchical fuzzy classification scheme.

TABLE V
OVERALL ACCURACIES OFCRISPOUTPUT OF FUzzY CLASSIFIER

Overall

mage Aoy (0
(%)
Columbia 92.7 0.909
Springfield 95.8 0.946

anda}'® anda!V are values between 0.0 and 1.0 representing
the uncertainty in the PS-MS data and the length—width contex-
tual measure for clagsThe input pixelr now has one member-
ship value in each of th& classes. Since a crisp classification is
desired, the fuzzy classification must be defuzzified to produce
a single class label for each pixel in the image. Defuzzification
is performed using the max operator such thé classified as
the class”' with the highest membership value

Class= arggr;ax{flm P, (@)} (14)

Fig. 7. Crisp output of fuzzy classifier for Columbia, MO imagery shown in
Fig. 1. Note the excellent delineation of road and building features. B. Hierarchical Fuzzy Classifier Results
The hierarchical fuzzy classifier was applied to both the Co-
where lumbia and Springfield image datasets using the same training
_ - - data that was used to generate the maximume-likelihood classi-
. — — aMS) . fMS — oWy . W L ) .
filw) = max{(l ;) [ (@), (L= ai™) - f (’3)} fication results presented in Section Il. The classification map
(13) of the Columbia imagery generated using the fuzzy classifier
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TABLE VI
CONFUSIONMATRIX FOR CRISPOUTPUT OF FUzZY CLASSIFICATION OF 1-m PS-MS ©LUMBIA IMAGE DATASET

Road Building Grass Tree Bare Soil  Water

Ref.  Ref.  Ref.  Ref. Ref. Ref, | Total %
Road 10147 1019 2 T 231 6 |11416] 8
Building | 982 12513 52 4 140 306 |13997| 89
Grass 99 23 25458 53 0 0 |25633| 99
Tree 62 57 1288 110227 0 o |12634| 89
BareSoil | 177 49 10 0 8864 o | 9100 97
Water 2 318 0 0 0 6798 | 7118 9%
Shadow | 18 931 0 0 0 48 | 997
Total | 11487 14910 26810 11.285 9235 7168 | 80,895
% 83 84 95 99 9% 95

is shown in Fig. 7. The accuracy assessments of the crisp cl
sifications using the hierarchical fuzzy classifier are shown
Table V. The overall accuracy of the Columbia image increas
by approximately 11% over the maximum-likelihood accurac
when the fuzzy classification scheme was implemented. Mol
over, the Kappa coefficient increased by 0.146. The overall ¢
curacy of the Springfield image increased by approximately 8
over the maximum-likelihood accuracy when the fuzzy class
fication scheme was implemented and the Kappa coefficient
creased by 0.106.

The confusion matrix for the crisp output of the fuzzy

classification of the Columbia image is shown in Table VI .Eﬂ?.’ggng
The averageéRoad-Buildingclassification accuracy increasec Grass
from 71%to 86%, and the avera@eass-Tre@accuracy increased =g;erg Soil
from 87% to 97%. In addition, thé/aterclassification accuracy B Water
increased from 69% to 95%. Fig. 8 shows the crisp classificati M Shadow
of suburban and urban area subsets from the Columbia image.

As the classification maps in Fig. 8 show, the fuzzy classifier

performs better in suburban areas than in urban areas, where'

problems of spectral overlap and within class variance are m f*

severe. However, when the classification maps in Figs. 8 a

2 are compared, it is clear that the fuzzy classifier outperforr

the maximum-likelihood classifier in both suburban and urbe

areas. The confusion matrix for the crisp output of the fuz:

classification of the Springfield image is shown in Table Vlll :

The averageRroad-Buildingclassification accuracy increasec -

from 70% to 92%. The averagerass-Treeaccuracy remained &

at 99%. In addition, theVater classification rate increased

from 72% to 93%.

For comparison purposes, the hierarchical fuzzy classifij .g“?g.
was applied to the 4-m MS Columbia dataset. The sar .G':;&;ng
training and reference sites used for the Columbia PS-M Hiree
dataset were used, however with the decrease in resolutl : M Bare Soil
of the imagery, the number of training and reference pixe M water
decreased accordingly. All algorithm parameters were kept I! W " M Shadow

same except the maximum length for the length—width feature (b)
extraction algorithm was decreased frdim.. = 200 pixels _ n
Fig. 8. Crisp output of fuzzy classifier for (a) suburban scene, (b) urban scene

0 Limax = 50 pixels, reflecting the decrease in reSOIUtioﬁlom the Columbia, MO image subsets shown in Fig. 2(a) and (c), respectively.
of the imagery. Also, the imagery was not smoothed with Note the significant improvement over the maximum-likelihood classification
median filter prior to application of the length—width featuréesults also shown in Fig. 2.

extraction. The entropy texture measure was calculated using

a 7x 7 pixel window (28x 28 m). This window size was the The classification accuracies for the 4-m MS Columbia
best compromise between minimizing edge effects and stihtaset are presented in Table VIII. The confusion matrices
extracting usable information from the objects of interest in tHeom the fuzzy and maximume-likelihood classifications of
image. the 4-m MS Columbia dataset are shown in Tables IX and X
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TABLE VII
CONFUSIONMATRIX FOR CRISPOUTPUT OF FuzzY CLASSIFICATION OF 1-m PS-MS 8RINGFIELD IMAGE DATASET

Road Building Grass Tree Bare Soil  Water Total %
Ref. Ref. Ref. Ref. Ref. Ref.
Road 28,967 4215 12 1 423 0 33,618 86
Building 1220 30,617 127 23 1000 0 32,987 93
Grass 54 16 48,755 2 1 0 48,828 100
Tree 15 2 247 49,493 0 206 49,963 99
Bare Soil 0 5 0 0 13,266 0 13,271 100
Water 6 0 0 0 0 5183 5189 100
Shadow 8 0 0 0 0 192 200
Total 30,270 34,855 49,141 49,519 14,690 5581 | 184,056
% 96 88 99 100 90 93
TABLE VI
CLASSIFICATION ACCURACIES FOR4-m MS GOLUMBIA IMAGE DATASET
Overall Kappa
Accuracy (%)  Coefficient
Fuzzy Classifier 83.5 0.791
Max. Likelihood 78.6 0.731
TABLE IX

CONFUSIONMATRIX FOR CRISPOUTPUT OF FUZZY CLASSIFICATION OF 4-m MS QOLUMBIA IMAGE DATASET

Road Building Grass Tree Bare Soil  Water Total %
Ref. Ref. Ref. Ref. Ref. Ref.
Road 559 79 0 16 39 3 696 80
Building 145 821 34 30 54 18 1102 74
Grass 6 6 1579 278 0 0 1869 84
Tree 0 2 28 407 0 0 437 93
Bare Soil 9 4 0 0 487 0 500 97
Water 0 47 0 0 0 409 456 90
Shadow 0 12 0 0 0 33 45
Total 719 971 1641 731 580 463 5105
% 78 85 96 56 84 88
TABLE X

CONFUSIONMATRIX FOR MAXIMUM LIKELIHOOD CLASSIFICATION OF 4-m MS GOLUMBIA IMAGE DATASET

Road Building Grass Tree Bare Soil  Water Total %
Ref. Ref. Ref. Ref. Ref. Ref.
Road 521 135 11 0 57 3 727 72
Building 183 765 23 46 36 18 1073 71
Grass 6 6 1560 273 0 0 1845 85
Tree 0 2 47 412 0 0 461 89
Bare Soil 9 4 0 0 487 0 500 97
Water 0 30 0 0 0 269 299 90
Shadow 0 29 0 0 0 173 202
Total 719 971 1641 731 580 463 5105
% 72 79 95 56 84 58

for comparison. As was the case with the 1-m PS-MS dafmagery is better suited for urban land cover mapping than the
the hierarchical fuzzy classification accuracy for the 4-m M&m MS imagery by itself.

data is highen~6%) than the maximum-likelihood classifi- )

cation accuracy. However, the increase in accuracy from the Postprocessing

maximume-likelihood classification to the fuzzy classification A majority filter was implemented to operate on thé@ter,
was larger(~12%) for the 1-m PS-MS data. The confusiorshadow, RogdandBuilding classes to increase the accuracy of
between thRoadand Building classes is decreased, howevethe fuzzy classification result and clean up the appearance of
there is little change in the classification accuracies of thke classification image. A majority filter operates by extracting
GrassandTreeclasses. The most likely explanation for this i& window of pixels around the pixel of interest and reclassifies
that the texture information useful for discrimination betweethe central pixel as the class with the largest number of pixels
these two classes is represented primarily in the 1-m resolutipnthe window. The majority filter was first applied to the
panchromatic band. Thus, it is clear that the 1-m PS-M§ater class, but instead of allowing thé/ater pixels to be
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reclassified as any class, thater pixels were only allowed
to be reclassified agVater, Shadow, Roadr Building. This
was done to keefWater pixels from being reclassified into
one of the vegetation classes.

After the Water pixels, the Shadowpixels were majority
filtered next. The pixels were reclassified Wfater, Road or
Building thus removing th&hadowclass from the image. It is
important to remove th8hadowclass, as it is not a real urban
land cover class. Finally, thRoadand Building pixels were
majority filtered and reclassified aRoad, Building, Water
or Bare Soil As was the case with the other majority-filtered
classes,Road and Building pixels were not allowed to be (6]
reclassified as one of the vegetation classes. The result of;
the majority filter postprocessing is a modest increase in
classification accuracy of 1% to 2% and a more spatially
coherent classification image.

(2]

(3]

(4]

(5]

(8]

V. CONCLUSION

The results presented here demonstrate the usefulness
high-resolution satellite imagery for urban land cover mapping
and some of the shortcomings of conventional classification
techniques such as maximum likelihood. It was found that max-
imum-likelihood classification of high-resolution multispectral [10]
imagery over urban areas produced significant amounts of
misclassification errors between spectrally similar classes suqtﬂl]
asRoadandBuilding classes. Different spatial measures such
as texture and contextual methods were investigated and found
to increase the discrimination between certain spectrally sim-
ilar classes. In particular, the X010 entropy texture window
measure and the length—width contextual measures were both
found to increase discrimination between tBeass-Treeand
Road-Buildingclasses, respectively. [13]

Finally, a hierarchical fuzzy classification method was devel-
oped that utilized both spectral and spatial information to clast*¥
sify the data. The classification accuracies of the fuzzy classifigfi 5
were approximately 10% greater than the maximum-likelihood
classification results for 1-m PS-MS image datasets. Accord-
ingly, there were significant decreases in the number of mis—lG]
classifications between spectrally similar classes. Further WOI’E(
is needed to improve the performance of the fuzzy classifier in
dense urban areas and to produce even more detailed urban ldhd
cover maps by identifying features such as parking lots and side
walks. We believe an image segmentation approach combin
with morphological feature operators may be used to further im-
prove upon the results presented here. [19]
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