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for High-Resolution Multispectral Data
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Abstract—In this paper, we investigate the usefulness of
high-resolution multispectral satellite imagery for classification of
urban and suburban areas and present a fuzzy logic methodology
to improve classification accuracy. Panchromatic and multispec-
tral IKONOS image datasets are analyzed for two urban locations
in this study. Both multispectral and pan-sharpened multispectral
images are first classified using a traditional maximum-likelihood
approach. Maximum-likelihood classification accuracies between
79% to 87% were achieved with significant misclassification
error between the spectrally similar Road and Building urban
land cover types. A number of different texture measures were
investigated, and a length–width contextual measure is developed.
These spatial measures were used to increase the discrimina-
tion between spectrally similar classes, thereby yielding higher
accuracy urban land cover maps. Finally, a hierarchical fuzzy
classification approach that makes use of both spectral and spatial
information is presented. This technique is shown to increase the
discrimination between spectrally similar urban land cover classes
and results in classification accuracies that are 8% to 11% larger
than those from the traditional maximum-likelihood approach.

Index Terms—Fuzzy classification, high-resolution satellite im-
agery, urban remote sensing.

I. INTRODUCTION

URBAN and economic growth places a heavy demand
on local governments to seek better planning and man-

agement approaches to deal with the numerous problems
associated with increasing urbanization. Timely and accurate
information products are required by federal, state, and local
government agencies and officials to make effective deci-
sions regarding a wide variety of issues affecting the urban
environment. High-resolution commercial satellite imagery
has been shown to be a cost-effective alternative to aerial
photography for the generation of digital image basemaps
[1], which are digital images with map-quality positional
accuracies. Information products derived from positionally
accurate high-resolution satellite imagery, such as land cover
maps, can be easily integrated into existing state and local
government GIS databases and utilized to aid officials in
planning and decision making processes [2]. Applications for
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urban land cover maps include environmental planning and
assessment, land use change detection/attribution, utility and
transportation planning, infrastructure inventory, stormwater
planning/mitigation, and water quality management.

Analysis of urban areas using medium-resolution remote
sensing imagery (e.g., Landsat) has typically focused on the
identification of built-up areas or discrimination between
residential, industrial, and commercial zones. However, with
the recent availability of commercial high-resolution satellite
multispectral imagery from sensors such as IKONOS and
QuickBird, it is now possible to produce more detailed urban
land cover maps by identifying features such as individual
roads and buildings in the urban environment. High-resolution
data over urban areas have been classified using morphological
profiles [3] and neural network techniques [4]. In addition,
various methods for road extraction from high-resolution
satellite imagery and aerial photography have been investigated
[5]–[7]. Studies have been conducted on the use of texture
and contextual information in the classification of high-reso-
lution satellite imagery of urban areas [8], [9]. In addition to
pixel-based approaches, high-resolution urban imagery can be
analyzed using segmentation and object-based classification
approaches [10], [11]. In [12], a supervised fuzzy classification
method for Landsat Thematic Mapper (TM) data is presented.

Because of the complex nature and diverse composition of
land cover types found within the urban environment, the pro-
duction of urban land cover maps from high-resolution satellite
imagery is a difficult task. The materials found in the urban en-
vironment include concrete, asphalt, metal, plastic, glass, shin-
gles, water, grass, trees, shrubs, and soil, to list just a few. More-
over, many of these materials are spectrally similar, and this
leads to problems in automated or semiautomated image clas-
sification of these areas. In addition, these materials form very
complex arrangements in the imagery such as housing develop-
ments, transportation networks, industrial facilities, and com-
mercial/recreational areas. Conventional methods for classifica-
tion [13] of multispectral remote sensing imagery such as paral-
lelepiped, minimum distance from means, and maximum like-
lihood, only utilize spectral information and consequently have
limited success in classifying high-resolution urban multispec-
tral images. As many classes of interest in the urban environ-
ment have similar spectral signatures, spatial information such
as texture and context must be exploited to produce accurate
classification maps.

Another disadvantage of conventional classification methods
is that they only produce crisp classifications, i.e., each pixel
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can only be classified as one class. However, remote sensing im-
ages contain mixed pixels and many land cover types have sim-
ilar spectral signatures. These problems are particularly severe
in urban environments. Fuzzy classification techniques allow
pixels to have membership in more than one class and there-
fore better represent the imprecise nature of the data. In this
paper, a hierarchical fuzzy classification method that incorpo-
rates both spectral and spatial information is presented. This
technique produces a substantial increase in classification ac-
curacy of urban land cover maps compared to the traditional
maximum-likelihood classification approach.

The remainder of this paper is organized as follows. The ac-
curacy and limitations of maximum-likelihood classification of
high-resolution satellite imagery over urban and suburban areas
are presented in Section II. In addition to spectral data, several
types of spatial information can be extracted from the high-reso-
lution imagery. These are investigated and corresponding results
are presented in Section III. In Section IV, we describe a hier-
archical fuzzy classifier that utilizes both spectral and spatial
information to produce more accurate urban land cover maps.
Finally, the conclusions are presented in Section V.

II. CLASSIFICATION OF HIGH-RESOLUTION

SATELLITE IMAGERY

We first investigated the effectiveness of high-resolution
satellite imagery for classification of urban and suburban scenes
using a traditional maximum-likelihood classifier. The imagery
used for this study was acquired by the IKONOS commercial
remote sensing satellite and consists of four multispectral (MS)
bands with 4-m resolution and a single panchromatic (PAN)
band with 1-m resolution. The four MS bands collect data
at the red, green, blue, and near-infrared wavelengths, and
the data in each band is stored with 11-b quantization. Two
IKONOS image datasets are used in this study: an image of
Columbia, MO acquired on April 30, 2000, and an image of
Springfield, MO acquired on September 17, 2000. Both image
datasets include a variety of urban and suburban land cover
types making them ideal for this study. Two separate datasets
were used to provide multiple evaluations of the algorithms
presented in this paper and to ensure that the algorithms were
not so highly specialized as to be applicable to only a single
dataset.

The Columbia image is shown in Fig. 1. The IKONOS images
went through several preprocessing steps before classification.
First, the images were orthorectified to increase the planar accu-
racy from 25 m RMS to approximately 3 m RMS. Map-quality
positional accuracy is needed so that the image data and deriva-
tive products (e.g., land cover map) can be effectively incor-
porated into GIS databases [1]. After orthorectification, a color
normalization method [14] was used to fuse the PAN data with
the four MS bands to produce a four-band pan-sharpened mul-
tispectral (PS-MS) image with 1-m resolution. The PS-MS im-
agery retained the 11-b quantization of the original data.

Both the 4-m MS and 1-m PS-MS image datasets were
classified using the traditional supervised maximum-likelihood
approach. A more detailed classification of the urban land-
scape is possible from the high-resolution IKONOS imagery

Fig. 1. One-meter resolution panchromatic IKONOS image of Columbia, MO.

TABLE I
MAXIMUM LIKELIHOOD CLASSIFICATION RESULTS FOR4-m MSAND 1-m

PS-MS IMAGE DATASETS

compared to medium-resolution multispectral image data (e.g.,
Landsat). Accordingly, the identification of fine-scale urban
features (residential houses, individual trees, etc.) in the image
can be achieved. The urban land cover classes used in this
study wereRoad, Building, Grass, Tree, Bare Soil, Water,and
Shadow. TheShadowclass is required to minimize the problem
of shaded pixels in the urban environment, e.g., building
shadows, being classified asWater. An accuracy assessment
of the resulting classification was performed making use of
reference pixels that were independent of the pixels used to
train the classifier. The reference pixel datasets were generated
via photo interpretation of the 1-m PS-MS IKONOS imagery.
Approximately 175 randomly distributed test site polygons
were manually digitized in the imagery. The Columbia dataset
had 9410 training pixels and 80 895 reference pixels, and the
Springfield dataset had 13 602 training pixels and 184 056
reference pixels. The same training and reference pixel sets
were used for all classification results presented in this paper.

Supervised maximum-likelihood classifications were pro-
duced for both the 4-m MS and the 1-m PS-MS images
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TABLE II
CONFUSIONMATRIX FOR MAXIMUM LIKELIHOOD CLASSIFICATION OF 1-m PS-MS COLUMBIA IMAGE DATASET

from both study locations. The confusion matrix, the overall
accuracy, and the Kappa coefficient of agreement [15]–[17]
were computed for each classification. The overall accuracy
was computed by dividing the number of correctly classified
reference pixels by the total number of reference pixels.
The Kappa coefficient adjusts the overall accuracy value by
subtracting the estimated contribution of chance agreement
between classified pixels and reference pixels [18]. The overall
accuracies and Kappa coefficients are presented in Table I. The
overall accuracies for the Springfield image were higher than
those corresponding to the Columbia image for both the 4-m
MS and the 1-m PS-MS datasets. This is most likely due to the
presence of a small amount of haze in the Columbia image.
The classification accuracies and Kappa coefficients of the 1-m
PS-MS data are several percent higher than those of the 4-m
MS data for both datasets, indicating that the pan-sharpened
images produced by the color normalization method can be
effectively used for classification purposes.

The confusion matrix for the PS-MS classification of the
Columbia image is shown in Table II. The largest source
of error is due to misclassifications between theRoad and
Building classes, with 26% of theRoad reference pixels
classified asBuilding and 18% of theBuilding reference
pixels classified asRoad. The other major source of error is
confusion between theGrassandTreeclasses, with 16% of the
Grassreference pixels classified asTreeand 11% of theTree
reference pixels classified asGrass. In addition, 26% of the
Waterreference pixels are classified asShadow. Suburban and
urban image subsets of the maximum-likelihood classification
for Columbia are shown in Fig. 2. The confusion matrix for the
PS-MS classification of the Springfield image shows similar
misclassification characteristics. The confusion matrix for the
Springfield PS-MS classification is shown in Table III. As with
the Columbia PS-MS classification, the largest source of error
in the Springfield classification is caused by misclassifications
between theRoadandBuilding classes, with 30% of theRoad
reference pixels classified asBuilding and 31% of theBuilding
reference pixels classified asRoad. Unlike the classification of
Columbia image, there is virtually no confusion between the
GrassandTreeclasses in the Springfield image. There is more
spectral variation between these classes in the Springfield data
because the image was acquired in the early fall time period,
resulting in less confusion between the classes. In addition,
24% of theWaterreference pixels are classified asShadow.

TheRoadandBuildingclasses in both images and theGrass
andTreeclasses in the Columbia image are spectrally similar
and have a significant amount of spectral overlap. This is the pri-
mary reason for the large number of misclassifications between
these classes. Traditional supervised classification methods that
only take into account spectral information, such as maximum
likelihood, are unable to differentiate between these classes with
a high degree of accuracy. Methods that utilize spatial informa-
tion in addition to spectral information are needed to produce
more accurate classifications of high-resolution image data over
urban areas.

III. SPATIAL INFORMATION EXTRACTION

Spatial features such as texture contain information about the
spatial distribution of tonal variations within a band and are typ-
ically derived from windows of data surrounding the area being
analyzed [19]. By combining spatial information and spectral
information, the amount of overlap between classes can be de-
creased, thereby yielding higher classification accuracies and
more accurate urban land cover maps. For example, while the
Grass and Tree classes can have similar spectral signatures,
areas in the image covered with grass appear much more ho-
mogeneous than tree-covered areas. This difference in homo-
geneity between regions can be used to decrease the confusion
between the classes. This is illustrated in Fig. 3, where an en-
tropy texture measure is used to differentiate between theGrass
andTreeland cover types.

A variety of texture measures utilizing different window sizes
were evaluated to test the usefulness of different texture mea-
sures. Each texture image was then added to the four PS-MS
bands as an extra channel of data and then classified using max-
imum-likelihood classification. The following occurrence tex-
ture measures were evaluated: entropy, data range, skewness,
and variance [20]. The texture features were calculated from
the normalized gray-level histogram, , of the pixel window

, where , and is the number of gray levels
in the image. The texture measures were calculated as follows:

entropy (1)

data range (2)

variance (3)
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(a) (b)

(c) (d)

Fig. 2. Maximum-likelihood classification for (b) suburban area, (d) urban area from the Columbia, MO image subsets shown in (a) and (c), respectively. Note
the significant misclassifications between theRoadandBuilding land cover types.

skewness (4)

where is the mean value of the gray levels in the window, i.e.,

(5)

Each texture measure was calculated with a 55, 10 10, and
20 20 pixel window. The window sizes tested were chosen to
be no larger than the objects of interest in the image from which
the texture measures were to extract information from. For that

reason, a 20-m-wide window was the largest texture kernel size
tested. While there were areas in the image, such as fields and
large tree covered areas, that were much larger than this, the
texture measures needed to be applicable to urban and suburban
areas where the objects of interest are on the order of 10–20 m in
size. All of the texture measures discussed here were extracted
from the panchromatic band of the IKONOS image datasets.

The average classification accuracy for theRoadandBuilding
classes and theGrassandTreeclasses from the Columbia image
is shown in Table IV. The first row in the table is the average
classification accuracies from the maximum-likelihood classi-
fication of the PS-MS data with no added texture measures. The
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TABLE III
CONFUSIONMATRIX FOR MAXIMUM LIKELIHOOD CLASSIFICATION OF 1-m PS-MS SPRINGFIELD IMAGE DATASET

entropy texture measures using both a 1010 and a 20 20
pixel window have a significant effect on the average classifi-
cation accuracy of theGrassandTreeclasses, where the classi-
fication accuracy of those classes increases approximately 10%
in both cases. Although the classification accuracies of both the
10 10 and 20 20 entropy texture measures were essentially
the same, the 10 10 window was chosen to help reduce edge
effects associated with large texture windows [21]. Several of
the other texture measures show moderate increase in the accu-
racy of these classes, but not as large as the increase found when
using the entropy texture measure. Most of the texture measures
actually decrease the average classification accuracies for the
RoadandBuildingclasses, and the best result (entropy 2020)
only yields a 1.5% increase over the PS-MS classification with
no texture features.

It was found in the previous section that the largest source
of confusion in the classification of the high-resolution urban
scenes is between theRoadandBuilding classes. Thus, a spa-
tial measure that can increase discrimination between these two
classes is highly desirable. One such spatial measure is to ex-
amine the context of each pixel, measuring the spatial dimen-
sions of groups of spectrally similar connected pixels. Roads
tend to consist of groups of spectrally similar pixels oriented
along a long narrow line. Buildings, on the other hand, usually
consist of a group of pixels with a similar spectral response ori-
ented in a more rectangular or square shape.

A simple algorithm was developed to extract the length and
width of spectrally similar connected groups of pixels from the
PS-MS imagery. The algorithm calculates a length and width
value for each pixel of interest in the image. These values are
found by searching along a predetermined number of equally
spaced lines radiating from the central pixel. The Euclidean dis-
tance

(6)

is calculated between the spectrum of the central pixel and the
spectrum of each new pixel, where is the dimensionality
of the data; is the value of theth band of the central pixel;
and is the value of theth band of the pixel in question. If
that value is less than a similarity threshold, the search continues
until the maximum allowed length is reached. Once all of the di-
rections have been searched, the maximum value is stored as the

length and the minimum value is stored as the width. The output
of the algorithm is a two-band length–width feature image.

Three parameters control the length–width extraction
algorithm: the number of search directions, , the max-
imum length, , and the similarity threshold, . The
similarity threshold, , has the largest effect on the perfor-
mance of the algorithm. The algorithm extracts accurate length
and width values if is set to between 2.5 to 4.0 times
the average standard deviation of the Euclidean distance of
the training pixel data from the class means. The length–width
extraction algorithm is summarized by the psuedocode shown
in Fig. 4. We found that if the data were median filtered before
the length–width algorithm was applied, then the length and
width measurements were more accurate representations of
the data. The median filter was chosen because of its inherent
properties of reducing tonal variations while retaining edges
[22]. A 7 7 window for the median filter was found to work
well. The kernel size for the median filter was chosen to be
smaller than the desired objects being analyzed for contextual
information (i.e., roads and buildings). However, the 77
window was large enough so that extremely fine-scale features
in the image, such as automobiles and linework on the roads,
were removed. Note that the effect of the median filtering is
not the same as simply working with lower resolution imagery,
as the edges between objects of interest are still preserved at
the 1-m resolution.

The outputs of the length–width extraction algorithm applied
to both an urban and a suburban scene are shown in Fig. 5.
The length values are displayed in the red channel of an RGB
display and width is displayed in the blue and the green chan-
nels. Vegetation pixels have been masked out so the effect of the
length–width measure on road and building pixels can be more
clearly seen. Pixels that have large length values and small width
values, such as road pixels, appear more red in color, while
pixels with similar length and width values, such as building
pixels, appear more blue in color. The parameters used for the
length–width extraction were: (10 azimuth sam-
pling), pixels, and . This algorithm
was applied to the Columbia image and the resulting two bands
of data were added to the four PS-MS bands and classified using
maximum-likelihood classification. The average classification
accuracy for theRoadand Building classes increased by 5%
when the length–width features were added. However, the av-
erage classification accuracy for theGrassandTreeclasses de-
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(a) (b)

(c) (d)

Fig. 3. Effect of entropy texture measure on classification ofGrass and Tree classes. (a) Image subset. (b) 10� 10 entropy texture measure. (c)
Maximum-likelihood classification of (a) (light gray= Grass, dark gray= Tree). (d) Maximum-likelihood classification of PS-MS data+ entropy.

creased by 9%. Finally, after inspection of the distributions of
the length–width measures, it was found that they were not nor-
mally distributed and the maximum-likelihood classification is
therefore not the best choice for classification using this type of
spatial feature.

IV. HIERARCHICAL FUZZY CLASSIFICATION APPROACH

Spatial measures extracted from the high-resolution
multispectral imagery can help decrease the number of misclas-

sifications between the spectrally similarRoad/Buildingand
Tree/Grassclasses. However, while one spatial feature might
increase the classification accuracy between one set of classes,
it might decrease the accuracy between another set using tra-
ditional classification methods. For example, the length–width
contextual measure discussed in the previous section increased
the maximum-likelihood classification accuracy betweenRoad
and Building by 5%, but the classification accuracy between
GrassandTreedecreased by 9%. The entropy texture measure
increased theGrassandTree maximum-likelihood classifica-
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TABLE IV
AVERAGE MAXIMUM LIKELIHOOD CLASSIFICATION ACCURACIESWITH TEXTURE INFORMATION INCLUDED FOR1-m PS-MS COLUMBIA IMAGE DATASET

Fig. 4. Psuedocode for length–width extraction algorithm.

tion accuracy by 10%, but this had almost no effect onRoad
andBuilding classification accuracy (Table IV).

Ideally, different classes should only be classified using
the spatial measures best suited for those classes. Toward
that end, we developed a fuzzy classification scheme that
allows the image to be hierarchically classified using different
spatial measures for different sets of classes. First, the max-
imum-likelihood classification of the PS-MS data is used to
split the data into four initial sets:Grass-Tree, Road-Building,
Water-Shadow, and Bare Soil. A membership value for each
class in each set is then calculated from membership functions
generated from the PS-MS data plus the appropriate spatial
measure. The 10 10 entropy texture measure is used for the
Grass-Treeset, and the length–width contextual measure is
used for both theRoad-Buildingand theWater-Shadowsets.
As the classification accuracy ofBare Soilis already high and
no spatial measures were found to increase the classification
accuracy of this class, only the PS-MS data is used to generate
the membership value for theBare Soilclass. After membership
values are calculated for each class in the set, the result is a
fuzzy classification with each input pixel having a membership
value in each class in the set. A crisp classification is generated

in a defuzzification step using the max operator. A block dia-
gram of this hierarchical fuzzy classification approach is shown
in Fig. 6. The membership values for each class are calculated
in parallel, so the pair classification order has no influence on
the final outcome. This differs from a decision-tree approach
where the pair-classification branching is done sequentially
and the order of the pair branching is critical in the final
classification outcome. Once divided into the initial sets, pixels
can only be classified as one of the set members to which
they belong. This does not have a negative impact on classifier
performance as the sets are chosen to include the classes that
have the largest amount of spectral confusion.

A. Fuzzy Classifier Implementation

As in [12], the membership functions used for the PS-MS
and entropy data are Gaussian shaped functions. The member-
ship functions are defined with two parameters: the mean vector

and covariance matrix , which are calculated from the
training data. The mean vector is used to represent the ideal
pixel in class . If an input pixel has the value , then it will
have a membership value of 1.0, and asmoves away from
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(a)

(b)

Fig. 5. Length–width contextual measures of (a) suburban subset shown in
Fig. 2(a), and (b) urban subset shown in Fig. 2(c).

the membership value decreases. The covariance matrixgov-
erns the width of the function. The membership value in class

for the PS-MS and entropy data is calculated as

(7)

and this is a scalar value representing the degree to which input
vector belongs to class . In the case of theGrass-Treeset,
is a five-dimensional vector containing the PS-MS data and the
10 10 entropy texture measure. For the other three class sets
(Road-Building, Water-Shadow, andBare Soil) the input vector

contains only the PS-MS data. Once the membership value in
each class has been calculated, a primitive fuzzy membership
vector is formed for

(8)

where is the number of classes in the set. After the member-
ship values for the PS-MS and entropy data have been calculated
for each class, they are rescaled to normalize the membership
values, forming the fuzzy membership vector

(9)

where

(10)

This normalization takes place within all classes. The vector
represents the degree to whichbelongs to each class

in terms of the PS-MS and entropy data.
A second membership value is calculated for the pixels in the

Road-BuildingandWater-Shadowsets using the length–width
contextual measure. The length–width values are not normally
distributed, so Gaussian-shaped functions are not appropriate
for the membership functions. Instead, the membership func-
tions are learned using a multilayer perceptron neural network.
The use of a neural network allows the membership functions
to be learned from training data without any prior assumptions
about the distribution of the data. The multilayer perceptron was
chosen for its ability to approximate arbitrarily shaped functions
and because of its ease in training. The multilayer perceptron is
trained using the standard back-propagation algorithm [23].

The membership functions for all the data could have
been generated using the multilayer perceptron, however this
approach was not chosen because the spectral and entropy
data were normally distributed and best represented with
Gaussian shaped functions. After the neural network has
learned the membership functions from the training data of
the length–width contextual data, membership values in the
Road-Building classes and theWater-Shadowclasses are
found for the pixels in those partitions resulting in a fuzzy
membership vector

(11)

where is the membership value of pixel in the
length–width membership function for class. The vector

represents the degree to whichbelongs to each
class in terms of the length–width contextual measure. Because
the length–width contextual measure contains no information
useful for the characterization of theGrass, Tree, andBare Soil
classes, is set to zero for those classes.

At this point each pixel has two fuzzy membership vectors,
and . These two vectors are combined using a

fuzzy union max operator [24] to produce a single fuzzy mem-
bership vector

(12)
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Fig. 6. Block diagram of hierarchical fuzzy classification scheme.

Fig. 7. Crisp output of fuzzy classifier for Columbia, MO imagery shown in
Fig. 1. Note the excellent delineation of road and building features.

where

(13)

TABLE V
OVERALL ACCURACIES OFCRISPOUTPUT OFFUZZY CLASSIFIER

and and are values between 0.0 and 1.0 representing
the uncertainty in the PS-MS data and the length–width contex-
tual measure for class. The input pixel now has one member-
ship value in each of the classes. Since a crisp classification is
desired, the fuzzy classification must be defuzzified to produce
a single class label for each pixel in the image. Defuzzification
is performed using the max operator such thatis classified as
the class with the highest membership value

Class (14)

B. Hierarchical Fuzzy Classifier Results

The hierarchical fuzzy classifier was applied to both the Co-
lumbia and Springfield image datasets using the same training
data that was used to generate the maximum-likelihood classi-
fication results presented in Section II. The classification map
of the Columbia imagery generated using the fuzzy classifier
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TABLE VI
CONFUSIONMATRIX FOR CRISPOUTPUT OFFUZZY CLASSIFICATION OF 1-m PS-MS COLUMBIA IMAGE DATASET

is shown in Fig. 7. The accuracy assessments of the crisp clas-
sifications using the hierarchical fuzzy classifier are shown in
Table V. The overall accuracy of the Columbia image increased
by approximately 11% over the maximum-likelihood accuracy
when the fuzzy classification scheme was implemented. More-
over, the Kappa coefficient increased by 0.146. The overall ac-
curacy of the Springfield image increased by approximately 8%
over the maximum-likelihood accuracy when the fuzzy classi-
fication scheme was implemented and the Kappa coefficient in-
creased by 0.106.

The confusion matrix for the crisp output of the fuzzy
classification of the Columbia image is shown in Table VI.
The averageRoad-Buildingclassification accuracy increased
from71%to86%,andtheaverageGrass-Treeaccuracy increased
from 87% to 97%. In addition, theWaterclassification accuracy
increased from 69% to 95%. Fig. 8 shows the crisp classification
of suburban and urban area subsets from the Columbia image.
As the classification maps in Fig. 8 show, the fuzzy classifier
performs better in suburban areas than in urban areas, where the
problems of spectral overlap and within class variance are most
severe. However, when the classification maps in Figs. 8 and
2 are compared, it is clear that the fuzzy classifier outperforms
the maximum-likelihood classifier in both suburban and urban
areas. The confusion matrix for the crisp output of the fuzzy
classification of the Springfield image is shown in Table VII.
The averageRoad-Buildingclassification accuracy increased
from 70% to 92%. The averageGrass-Treeaccuracy remained
at 99%. In addition, theWater classification rate increased
from 72% to 93%.

For comparison purposes, the hierarchical fuzzy classifier
was applied to the 4-m MS Columbia dataset. The same
training and reference sites used for the Columbia PS-MS
dataset were used, however with the decrease in resolution
of the imagery, the number of training and reference pixels
decreased accordingly. All algorithm parameters were kept the
same except the maximum length for the length–width feature
extraction algorithm was decreased from 200 pixels
to 50 pixels, reflecting the decrease in resolution
of the imagery. Also, the imagery was not smoothed with a
median filter prior to application of the length–width feature
extraction. The entropy texture measure was calculated using
a 7 7 pixel window (28 28 m). This window size was the
best compromise between minimizing edge effects and still
extracting usable information from the objects of interest in the
image.

(a)

(b)

Fig. 8. Crisp output of fuzzy classifier for (a) suburban scene, (b) urban scene
from the Columbia, MO image subsets shown in Fig. 2(a) and (c), respectively.
Note the significant improvement over the maximum-likelihood classification
results also shown in Fig. 2.

The classification accuracies for the 4-m MS Columbia
dataset are presented in Table VIII. The confusion matrices
from the fuzzy and maximum-likelihood classifications of
the 4-m MS Columbia dataset are shown in Tables IX and X
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TABLE VII
CONFUSIONMATRIX FOR CRISPOUTPUT OFFUZZY CLASSIFICATION OF 1-m PS-MS SPRINGFIELD IMAGE DATASET

TABLE VIII
CLASSIFICATION ACCURACIES FOR4-m MS COLUMBIA IMAGE DATASET

TABLE IX
CONFUSIONMATRIX FOR CRISPOUTPUT OFFUZZY CLASSIFICATION OF 4-m MS COLUMBIA IMAGE DATASET

TABLE X
CONFUSIONMATRIX FOR MAXIMUM LIKELIHOOD CLASSIFICATION OF 4-m MS COLUMBIA IMAGE DATASET

for comparison. As was the case with the 1-m PS-MS data,
the hierarchical fuzzy classification accuracy for the 4-m MS
data is higher 6% than the maximum-likelihood classifi-
cation accuracy. However, the increase in accuracy from the
maximum-likelihood classification to the fuzzy classification
was larger 12% for the 1-m PS-MS data. The confusion
between theRoadandBuilding classes is decreased, however
there is little change in the classification accuracies of the
GrassandTreeclasses. The most likely explanation for this is
that the texture information useful for discrimination between
these two classes is represented primarily in the 1-m resolution
panchromatic band. Thus, it is clear that the 1-m PS-MS

imagery is better suited for urban land cover mapping than the
4-m MS imagery by itself.

C. Postprocessing

A majority filter was implemented to operate on theWater,
Shadow, Road, andBuildingclasses to increase the accuracy of
the fuzzy classification result and clean up the appearance of
the classification image. A majority filter operates by extracting
a window of pixels around the pixel of interest and reclassifies
the central pixel as the class with the largest number of pixels
in the window. The majority filter was first applied to the
Water class, but instead of allowing theWater pixels to be
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reclassified as any class, theWater pixels were only allowed
to be reclassified asWater, Shadow, Road, or Building. This
was done to keepWater pixels from being reclassified into
one of the vegetation classes.

After the Water pixels, theShadowpixels were majority
filtered next. The pixels were reclassified asWater, Road, or
Building thus removing theShadowclass from the image. It is
important to remove theShadowclass, as it is not a real urban
land cover class. Finally, theRoadand Building pixels were
majority filtered and reclassified asRoad, Building, Water,
or Bare Soil. As was the case with the other majority-filtered
classes,Road and Building pixels were not allowed to be
reclassified as one of the vegetation classes. The result of
the majority filter postprocessing is a modest increase in
classification accuracy of 1% to 2% and a more spatially
coherent classification image.

V. CONCLUSION

The results presented here demonstrate the usefulness of
high-resolution satellite imagery for urban land cover mapping
and some of the shortcomings of conventional classification
techniques such as maximum likelihood. It was found that max-
imum-likelihood classification of high-resolution multispectral
imagery over urban areas produced significant amounts of
misclassification errors between spectrally similar classes such
asRoadandBuilding classes. Different spatial measures such
as texture and contextual methods were investigated and found
to increase the discrimination between certain spectrally sim-
ilar classes. In particular, the 1010 entropy texture window
measure and the length–width contextual measures were both
found to increase discrimination between theGrass-Treeand
Road-Buildingclasses, respectively.

Finally, a hierarchical fuzzy classification method was devel-
oped that utilized both spectral and spatial information to clas-
sify the data. The classification accuracies of the fuzzy classifier
were approximately 10% greater than the maximum-likelihood
classification results for 1-m PS-MS image datasets. Accord-
ingly, there were significant decreases in the number of mis-
classifications between spectrally similar classes. Further work
is needed to improve the performance of the fuzzy classifier in
dense urban areas and to produce even more detailed urban land
cover maps by identifying features such as parking lots and side
walks. We believe an image segmentation approach combined
with morphological feature operators may be used to further im-
prove upon the results presented here.
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