
Quantification Error Versus Location Error in 
Comparison of Categorical Maps 

R. Gll Pontlus, Jr. 

Abstract 
This paper analyzes quantification error versus location error 
in a comparison between two cellular maps that show a cate- 
gorical variable. Quantification error occurs when the quantity 
of cells of a particular category in one map is different from 
the quantity of cells of that category in the other map. Location 
error occurs when the location of a category in one map is 
different from the location of that category in the other map. 
The standard Kappa index of agreement is usually not appro- 
priate for map comparison. This paper offers alternative 
statistics: (1) proportion correct with p e ~ e c t  ability to specify 
location, (2) proportion correct with pegect ability to specify 
quantity, (3) Kappa for no ability, (4) Kappa for location, and 
(5) Kappa for quantity. These statistics can help scientists 
improve classification. This paper applies these theoretical 
concepts to the validation of a land-use change model for the 
Zpswich Watershed in Massachusetts. 

Introduction 
The growth of GIS and remote sensing has made it increasingly 
necessary to develop statistical measurements of agreement 
between cellular maps (Congalton and Green, 1993). During a 
comparison, one map is usually considered reality and the other 
map is simulated by a model or satellite. The goal of the com- 
parison is to measure the agreement between the two maps. 
This paper addresses a situation where both maps show a cate- 
gorical variable, such as land type. 

Creation of a contingency table is usually the first step in 
the objective comparison of maps (Congalton and Green, 
1999). Table 1 shows the layout for a J-by-Jcontingency table, 
where Jis the number of categories in each map. Each map grid 
cell is classified according to both its category in the reality map 
and its category in the simulated map. The entries of Table 1 
give proportions of the study area. The "total" row at the bottom 
shows the marginal distribution of the quantity of grid cells in 
reality. The "total" column on the right shows the marginal dis- 
tribution of the quantity of grid cells in the simulation. The 
sum of the main diagonal gives the proportion correct classifi- 
cation for the entire study area. 

At first glance, the proportion correct classification seems 
to be a straightforward statistic, but it is tricky to interpret 
because a surprisingly high number of cells can be classified 
correctly due to chance. Therefore, it is necessary to incorpo- 
rate the expected proportion correct classification due to 
chance in an index of agreement. Equation 1 gives one of the 
most popular indices: i.e., 

Kappa = 
(Po - PC) 
(Pp - PC) 

where Po is the observed proportion correct, PC is the expected 
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proportion correct due to chance, and Pp is the proportion cor- 
rect when classification is perfect. 

Kappa is usually attributed to Cohen (1960); however, 
Smeeton (1985) traces its history to Galton (1892). Pontius 
(1994) is probably one of many investigators who indepen- 
dently derived the Kappa. Kappa is a member of a family of 
indices (Landis and Koch, 1977; Aickin, 1990) that have the fol- 
lowing desirable properties: (1) if classification is perfect, then 
Kappa = 1; (2) if observed proportion correct is greater than 
expected proportion correct due to chance, then Kappa > 0; (3) 
if observed proportion correct is equal to expected proportion 
correct due to chance, then Kappa = 0; and (4) if observed pro- 
portion correct is less than expected proportion correct due to 
chance, then Kappa < 0. 

Many modelers, remote sensing specialists, and statisti- 
cians endorse the Kappa and encourage collea@es to adopt it 
(Rosenfield, 1986; Cartersen, 1987; Hudson and Ramm, 1987; 
Stehman, 1996). However, the appropriateness of the standard 
Kappa depends on whether or not the marginal distributions 
are fixed by the scientist (Cohen, 1960; Brennan and Prediger, 
1981; Foody, 1992). The standard Kappa is appropriate for con- 
tingency tables when the scientist does not have control over 
the marginal distributions, such as a test of the agreement be- 
tween smoking and respiratory illness. In contrast, usually a 
goal of a satellite or spatially explicit model is to obtain similar 
marginal distributions; hence, the standard method to com- 
pute the expected proportion correct classification by chance is 
usually not appropriate for classification schemes that attempt 
to specify accurately both quantity and location. A GIS-based 
classification scheme should be judged on its ability to pro- 
duce accurately both quantities and locations of categories of 
grid cells in a map (Card, 1982; Congalton et al., 1983; Con- 
galton, 1991). For such classification schemes, the methods 
section describes some appropriate ways to compute alterna- 
tives to the standard Kappa. This paper also gives new methods 
for scientists to validate and to improve a wide variety of spa- 
tially explicit classification schemes such as those described in 
Turner (1988), Monserud and Leemans (1992), Hall (1995), 
Lambin (1996), Veldkarnp and Fresco (1996), Liverman (1998), 
Wu (1998), etc. 

QuantMcatlon versus Loeatlon 
When comparing maps for validation, we can distinguish 
between quantification error and location error. Quantifica- 
tion error occurs when the quantity of cells of a category in 
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TABLE 1. CONTINGENCY TABLE FOR J CATEGORIES WHERE ENTRIES ARE 
PROPORTIONS OF STUDY AREA 

Reality 

Simulation 1 2 ... J total 

J Prl PD Pn Sr = E P I ~  
total R1 = Epjl R, = EpI2 ... RJ = EpjJ 1 

one map is different than the quantity of cells of that category 
in the other map. Even if there is no quantification error, loca- 
tion error can occur where the location of a category in one 
map is different than the location of that category in the other 
map. 

Each spatially explicit simulation can be categorized 
according to its ability to specify accurately both quantity and 
location. Table 2 shows the expected proportion correct classi- 
fication of simulations according to their idealized ability to 
specify quantity and location. Simulations that have no ability 
to specify location accurately are in the NL column of Table 2. 
Simulations in the PL column have perfect ability to specify 
location accurately. Simulations that have no ability to specify 
quantity accurately are in the NQrow. Simulations in the PQrow 
have perfect ability to specify quantity accurately. The MQ row 
and ML column show medium levels of ability to specify accu- 
rately quantity and location, respectively. Most simulations 
have some medium ability to predict both quantity and loca- 
tion, so the central entry of Table 2 is the observed proportion 
correct classification, denoted Po. The following subsections 
derive the equations in Table 2 and define "no ability," 
"medium ability," and "perfect ability." 

Specify Location at Random 
Let us consider the expected proportion correct classification 
of a simulation that has no ability to specify quantity accu- 
rately and no ability to specify location accurately. The simula- 
tion assigns llJof the cells to each of the Jcategories because 
the simulation has no ability to distinguish among the catego- 
ries (Foody, 1992). The simulation distributes those cells at 
random locations on the map; therefore, the expected propor- 
tion correct with no information of quantity and no informa- 
tion of location (NQNL) is 11Jas given in the NQ row NL column 
of Table 2. Equation 2 gives the derivation; i.e., 

I J 
NQNL = 2 (111) Rj = (111) 2 Rj = 1IJ 

j= 1 j=1 

where 111 is the proportion of cells assigned to category j by sim- 
ulation and Rj is the proportion of cells in category j in reality. 

Real Quantity % 

Figure 1. Percent correct with medium ability to specify 
quantity and no ability to specify location (MQNL) for two 
categories. 

Thus, Po - NQNL is the success attributable to the simulation. 
Let sj be the proportion of cells in category j in the simula- 

tion. Using the same mathematical reasoning, the MQ row NL 
column of Table 2 gives the proportion classified correctly asso- 
ciated with a simulation that has some medium ability to spec- 
ify quantity accurately, but assigns locations at random (MQNL). 
For a fixed distribution of Sj,  MQNL - NQNL is the success due 
to the simulation's ability to specify quantity, and Po - MQNL is 
the success due to the simulation's ability to specify location. 

Figure 1 shows the surface of MQNL for the case where there 
are two categories, j and not j. The success space is defined by 
the reality axis (R-axis), the simulation axis (S-axis), and the 
correct axis (C-axis). The R-axis shows the proportion of cells 
of category jin reality, the S-axis shows the proportion of cells 
of category j in the simulation, and the C-axis shows the pro- 
portion of cells classified correctly by the simulation. The mag- 
nitude of the quantification error is S minus R, so any point 
outside the S = R plane has quantification error. Figure 1 is 
symmetric about the S = R plane which illustrates the fact that 
it makes no difference mathematically which map is consid- 
ered simulated and which map is considered reality. The abil- 
ity to specify quantity accurately is valuable when the pro- 
portion of category j in the real landscape is near either 0 or 1. 

In the next case, if the simulation has perfect ability to 
specify quantity and no ability to specify location, then simu- 
lation assigns Si = Rj, and locations at random. The PQrow NL 
column of Table 2 gives the expected proportion correct classi- 
fication with perfect ability of quantity and no ability of loca- 
tion PQNL. 

Ability to  Specify Location 

Abilitv to Sl3ec:ify Uua~lt i tg N U  (NL) Medium (MI,) Perfect (PI>) 

Medium (MQ) Proportion correct observed. 
denoted Po 

Pcrfrc t (PQ) C (Rf) PQNI + I( lo~dtion(1 - PQNL) 1 
I- J 
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Speclfy Location Perfectly 
Now let's turn our attention to simulations that have perfect 
ability to specify location accurately, found in the PL column of 
Table 2. These simulations do the best job possible at assigning 
a specified quantity of cells to the correct locations within the 
map, such that the total proportion correct classification is lim- 
ited only by quantification error. The proportion correct cIassi- 
fication for any particular category is at most the smaller of (a) 
the total proportion of that category in the simulated map and 
(b) the total proportion of that category in the reality map. 

For the case where we have no information of quantity, the 
simulation sets the proportion in each category to 111. The NQ 
row PL column of Table 2 gives the proportion correct for a sim- 
ulation with no information of quantity and perfect informa- 
tion of location (NQPL). 

Next, consider a simulation that has a medium ability to 
specify quantity accurately and perfect ability to specify loca- 
tion (MQPL). The MQ row PL column of Table 2 gives MQPL by 
using the same mathematical logic as NQPL. Figure 2 shows 
MQPL for J = 2. A quantification error of f- 1 unit creates a de- 
crease of one unit in proportion correct. For a fixed distribu- 
tion of Sj ,  MQPL - Po is the error due to a simulation's specifica- 
tion of location, and 1 - MQPL is the error due to a simulation's 
specification of quantity. 

Finally, the PQrow PL column of Table 2 shows that a simu- 
lationthat has perfect ability to specify accurately both quan- 
tity and location attains perfect classification; thus, PQPL = 1. 

Kstandard 
Recall that Kappa compares the observed proportion correct to 
the expected proportion correct due to chance. According to 
Table 2, the expected proportion correct due to chance of a sim- 
ulation with no information of quantity and no information of 
location is 111. However, the standard Kappa does not use 1IJas 
the expected proportion correct due to chance; the standard 
Kappa uses MQNL from Table 2. Table 3 gives the equation for 
standard Kappa, denoted as Kstandard. Kstandard measures a 
simulation's ability to attain perfect classification, given a fixed 
marginal distribution of Si. 

Kno 
Let us now define an alternative to the standard Kappa. Kappa 
for no ability, denoted Kno, indicates the proportion classified 
correctly relative to the expected proportion classified cor- 
rectly by a simulation with no ability to specify accurately 

," 
100 

Real Quantity % 

Figure 2. Percent correct with medium ability to specify 
quantity and perfect ability to specify location (MQPL) for 
two categories. 

TABLE 3. FORMULAS AND SIMULATION RESULTS FOR VARIATIONS OF KAPPA 

Kappa Definition Ipswich Results 

Variations Formula Formula Kappa (%I 
Kstandmd PO - MQNL 0.91 - 0.90 12 

1 - MONL 1.00 - 0.90 
PO - NQNL 
1 - NQNL - - 

Klocation PO - MQNL 0.91 - 0.90 28 
MQPL - MQNL 0.94 - 0.90 

Kquantity Po - NQML 0.91 - 0.51 87 
PQML - NQML 0.97 - 0.51 

quantity or location. Table 3 gives Kno where Po = obsewed 
proportion of cells classified correctly, PC = NQNL = 111, and 
Pp = 1. Kno is the success attributable to the simulation divided 
by the maximum possible success attributable to a perfect sim- 
ulation. Both Kstandard and Kno attain 1 only when Rj = Sj and 
location is perfect. However, there are three major problems 
with Kstandard. Kno fixes the first two of these problems listed 
below. 

The first major problem is that Kstandard fails to penalize 
for large quantification error. Kstandard can be positive over 
all combinations of R and S. Kstandard can be positive even 
when the observed proportion of cells classified correctly is 
less than 111, whereas Kno is negative when there is large quan- 
tification error. 

The second problem is that Kstandard fails to reward suffi- 
ciently when S is near R, especially when R is near 0 or 1. Fig- 
ure 1 shows that MQNL is near 1 when both R and S are near o or 
1. The simuIation should receive reward for specifying quan- 
tity accurately, but Kstandard attributes those correct classifica- 
tions to chance. Kno properly rewards the simulation for 
specifying quantity accurately. 

The third major problem is that Kstandard fails to distin- 
guish clearly between quantification error and location error. 
For example, if quantification error exists, then Kstandard is 
constrained to be less than 1, even when a simulation could be 
otherwise perfect at specifying location. Conversely, if location 
error exists, then Kstandard is constrained to be less than 1, 
even when a simulation could be perfect at specifying quantity. 
Kno also has this third problem. 

Therefore, let us define a Kappa for location, denoted Kloca- 
tion, as shown in Table 3, where Po = observed proportion of 
cells classified correctly, PC = MQNL, and Pp = MQPL. Given a 
fixed distribution of Sj, Klocation is the success due to the simu- 
lation's ability to specify location divided by the maximum 
possible success due to a simulation's ability to specify location 
perfectly. The upper range of Klocation is 1, regardless of quan- 
tification error. 

Klocation is helpful in defining a success space similar to 
Figures 1 and 2. In Figures 3 and 4, the Klocation axis replaces 
the proportion simulated (S) axis of Figures 1 and 2. Figure 3 
shows the proportion correct classification of a simulation for 
which there is no information concerning quantity; therefore, 
the proportion of map grid cells assigned to each category is 
1IJ. If the simulation assigns location at random (that is, Kloca- 
tion = O), then the expected proportion correct is 111. If the sim- 
ulation is perfect at specifying location (that is, Klocation = I ) ,  
then the proportion correct is NQPL. The ability to specify loca- 
tion accurately is valuable when the proportion of category jin 
the real landscape is near 111. 

Figure 4 shows the proportion correct classification for a 
simulation in which there is perfect information concerning 
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Real Quantity % 

Figure 3. Percent correct with no ability to specify quantity 
and medium ability to specify location (NQML) for two 
categories. 

Real Quantity % 

Figure 4. Percent correct with perfect ability to specify quan- 
tlty and medium ability to specify location (PQML) for two 
categories. 

quantity, that is, Sj = Ri. Ifthe simulation assigns location at ran- 
dom (that is, Klocation = O), then the expected proportion cor- 
rect is PQNL. If the simulation specifies locations perfectly (i.e., 
Klocation = I), then the proportion correct is 1. The ability to 
specify quantity accurately is valuable when the proportion of 
category jin the real landscape is near 0 or 1. 

Kquanttty 
Given a fixed Klocation, column ML of Table 2 defines (a) pro- 
portion correct with no ability to specify quantity and medium 
ability to specify location (NQML) and (b) proportion correct 
with perfect ability to specify quantity and medium ability to 
specify location (PQML). For a fixed Klocation, NQML-NQNL is 
the success due to a simulation's specification of location, Po 
- NQML is the success due to a simulation's specification of 
quantity, PQML - Po is the error due to a simulation's specifi- 
cation of quantity, and 1 - PQML is the error due to a simula- 
tion's specification of location. 

NQML and PQML are helpful in defining a Kappa for quan- 
tity, denoted Kquantity. Table 3 defines Kquantity, where Po = 

proportion correct observed, PC = NQML, and Pp = PQML. Given 
a fixed Klocation, Kquantity is the success due to the simula- 
tion's ability to specify quantity divided by the maximum pos- 
sible success due to a simulation's ability to specify quantity 
perfectly. 

Appllcatlon to the lpswlch Watershed, Massachusetts 
To illustrate the theoretical concepts, I apply the above statis- 
tics to a land-use change model that uses a multi-criteria evalu- 
ation to predict human induced disturbance to a landscape. 
The model predicts the quantity and location of new residen- 
tial land versus other land from 1985 to 1991 in the watershed 
of Ipswich, Massachusetts. The model is calibrated with maps 
of socio-physical characteristics and residential areas in 1971 
and 1985. The model predicts locations of land-use change due 
to new residential development from 1985 to 1991 based on 
suitability for human habitation due to socio-physical charac- 
teristics, such as proximity to roads. The model predicts that 
the quantity of new residential land in Ipswich Massachusetts 
between 1985 and 1991 is 8 percent of the watershed, based on 
an exponential extrapolation from 1951 to 1985. MassGIS 
(1999) supplies the maps for calibration and validation. 

Results 
Figure 5 shows the spatial arrangement of those grid cells that 
were classified correctly and incorrectly in the simulation for 
the Ipswich watershed. Table 3 shows Kno is 82 percent, which 
is a result of poor ability to specify location (Klocation = 28 
percent) and good ability to specify quantity (Kquantity = 87 
percent). Kstandard of 1 2  percent indicates that specification 
of location is poor, given a fixed quantity. The quantity of dis- 
turbance in the simulated map is 8 percent, whereas the quan- 
tity of disturbance in reality is 2 percent. 

The overall proportion correct is 91 percent. MQPL = 94 
percent, which indicates that if the scientist improves specifi- 
cation of location only, then proportion correct can increase by 
at most 3 percentage points, as shown in Figure 6. However, 
PQML = 97 percent, which indicates that if the scientist 
improves specification of quantity, then the proportion correct 
can increase by 6 percentage points. 

Discussion 
The Ipswich watershed example shows that the statistics given 
in this paper can be useful for analysis and improvement of 
classification. PQML and MQPL show that, if the purpose of the 
model is to maximize percent correct, then it is more important 
to improve the specification of quantity than to improve speci- 
fication of location. Perhaps, the scientist should consider 
determining quantity by a linear rather than exponential 
extrapolation. Only 2 percent of the watershed underwent 
change from 1985 to 1991, so an accurate specification of quan- 
tity can yield a large percent correct, even when locations are 
distributed at random. If the quantity of change were close to 50 
percent of the watershed, then it would be important to specify 
location accurately. 

However, a large percent correct is not necessarily an 
important criterion to judge classification schemes because a 
large portion of percent correct can be attributable to chance. If 
a scientist is interested in location, then Klocation can be a 
more important criterion than either Kno or percent correct. For 
the Ipswich watershed example, Klocation shows that specifi- 
cation of location is poor, but MQPL shows that, if specification 
of location were good, then percent correct would increase 
only modestly. 

As a warning, N Q M ,  PQML, and Kquantity are based on the 
assumption that Klocation is constant across various scenarios 
of quantification. However, Klocation can change when quanti- 
fication changes. Nevertheless, NQML, PQML, and Kquantity 
serve as reasonable guide posts for the scientist. 
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Figure 5. Simulated versus real change to new residential land use from 1985 to 
1991 in the lpswich watershed. 

100 €I error due to quantity 
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Il error due to location 
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Figure 6. Sources of classification suc- 
cesses and errors assuming fixed specifi- 
cation of quantity in the lpswich 
watershed. 

The standard Kappa offers almost no useful information 
because it confounds quantification error with location error. 
A Kstandard of 12 percent would seem to indicate that the clas- 
sification is poor, when in fact 91 percent of the cells are classi- 
fied correctly. Kstandard fails to reward the simulation for good 
specification of quantity. 

Conclusions 
This paper gives equations to enable scientists to separate over- 
all classification error into quantification error and location 
error. This insight can help scientists to decide whether to dedi- 
cate energy to improve a simulation's ability to specify quan- 
tity versus location. As a rule of thumb, if the quantity of grid 
cells in the map of reality is distributed equally among the cate- 
gories, then percent correct classification is large when location 
is specified accurately. If the quantity of grid cells in the map of 
reality is not distributed equally among the categories, then 

percent correct classification is large when quantity is specified 
accurately. Specifically, when PQML - Po is large, then scien- 
tists can improve percent correct by improving the simula- 
tion's ability to specify quantity. When MQPL - Po is large, then 
scientists can improve percent correct by improving the simu- 
lation's ability to specify location. Scientists should use Kno to 
evaluate the simulation's overall success, Klocation to evalu- 
ate the simulation's ability to specify location, and Kquantity to 
evaluate the simulation's ability to specify quantity. 
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conference on "Demonstrating the Value of Satellite Imagery." It was held December 6-10. 1999 in 
Denver, Colorado. The conference offered a unique opportunity for resource manager, land planners, 
and transportation and environmental specialists to learn about the valuable information that can be 
extracted from satellite imagery. The papers contained on this CD-ROM proceedings cover the topics 
- remote sensing applications for forest assessment, applications of remote sensing in transportation, 
precision agriculture applications, U.S. state and local government environmental applications, emer- 
gency response applications, forestry change detection, military base applications, water and wetland 
management, urban area analysis, landscape and habitat management, global ecosystem analysis, and 
more. Also included is extensive exhibitor product/se~ice information. 
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