Brief Review of Statistical Mechanics

Introduction

Statistical mechanics: "a branch of physics which studies macroscopic systems from a microscopic or molecular point of view" (McQuarrie,1976) Also see (Hill,1986; Chandler, 1987)

Stat mech will inform us about

- how to set up and run a simulation algorithm
- how to estimate macroscopic properties of interest from simulations

Two important postulates

- in an isolated system with constant E, V, and N, all *microstates* are equally likely.
- time averages are equivalent to *ensemble* averages (principle of ergodicity).

The *ensemble* formalism allows extension of these postulates to more useful physical situations.

Ensembles

Ensemble: "the (virtual) assembly of all possible microstates (that are) consistent with the constraints with which we characterize the system macroscopically" (Chandler, 1987)

Microstate: the complete specification of a system at the most detailed level.

In the most rigorous sense, the microstate of a system is its quantum state, which is obtained by solving the Schrodinger equation. Quantum states are discrete and have discrete probabilities.

However, the microstate of a *classical* system is completely specified by the positions (\mathbf{r}) and momenta (\mathbf{p}) of all particles. Such microstates are part of a continuum and must be described with probability density functions.

Note: We will sometimes use quantum notation for compactness, but the focus of this part of the course is on classical systems.

Macroscopic constraints: generally, these are thermodynamic properties (energy, temperature, pressure, chemical potential, ...)

Role of simulation

For a given model system, the tasks of a molecular simulation are to:

(1) Sample microstates within an ensemble, with the appropriate statistical weights

(2) During the sampling, calculate and collect molecular-level information that aids in understanding the physical behavior of the system

(3) Employ a large enough sample size to ensure that the collected information is meaningful
(Note: even with today's powerful computers, it is generally impossible to sample all of the microstates of a model system.)

Microcanonical ensemble.

Constant E, V, N.

According to the first postulate, all of these states are equally likely.

$$\pi_i = \frac{1}{\Omega}$$

Properties that can be measured over a simulation:

T, p. And, with more effort, μ .

Note: The conjugate variables are the ones that can be "measured" as outcomes.

$$dE = TdS - pdV + \mu dN$$
$$dS = \left(\frac{1}{T}\right)dE + \left(\frac{p}{T}\right)dV - \left(\frac{\mu}{T}\right)dN$$

Canonical ensemble.

Constant T, V, N.

Now the boxes may have different energies!

Can show (Hill, 1986; McQuarrie, 1976) that the probability of a state is

$$\pi_i(E_i) = \frac{e^{-\beta E_i}}{Q}, \text{ where } \beta = \frac{1}{k_B T}$$

Properties that can be measured:

E, p. And, with more effort, μ .

The governing equation is

$$d\left(S - \frac{E}{T}\right) = -Ed\left(\frac{1}{T}\right) + \left(\frac{p}{T}\right)dV - \left(\frac{\mu}{T}\right)dN$$

Isothermal-isobaric ensemble.

Constant T, p, N.

Now the boxes may have different energies and volumes!

Can show (Hill, 1986; McQuarrie, 1976) that the probability of a state is

$$\pi_i \! \left(\mathsf{E}_i, \mathsf{V}_i \right) = \frac{e^{-\beta \mathsf{E}_i} e^{-\beta \mathsf{P} \mathsf{V}_i}}{\Delta}$$

Properties that can be measured:

E, V. And, with more effort, μ .

The governing equation is

$$d\left(S - \frac{E}{T} - \frac{pV}{T}\right) = -Ed\left(\frac{1}{T}\right) - Vd\left(\frac{p}{T}\right) - \left(\frac{\mu}{T}\right)dN$$

Grand canonical ensemble.

Constant T, V, µ.

Now the boxes may have different energies and numbers of molecules!

Can show (Hill, 1986; McQuarrie, 1976) that the probability of a state is

$$\pi_i\!\!\left(E_i,N_i\right)=\frac{e^{-\beta E_i}e^{\beta\mu N_i}}{\Xi}$$

Properties that can be measured:

E, p, and N.

The governing equation is

$$d\left(S - \frac{E}{T} + \frac{N\mu}{T}\right) = -Ed\left(\frac{1}{T}\right) + \left(\frac{p}{T}\right)dV + Nd\left(\frac{\mu}{T}\right)$$

Bridges to macroscopic thermodynamics

Partition functions.

The normalization constants are referred to as partition functions, and they have (macroscopic) physical significance.

Summary, in "quantum" notation:

Ensemble	Partition Function	Bridge Equation
Micro- canonical	$\Omega(E,V,N) = \sum_{i} 1$	$\frac{S}{k_B} = \ln \Omega$
Canonical	$Q(T,V,N) = \sum_{i} e^{-\beta E_{i}}$	–βA = InQ
Isothermal- Isobaric	$\Delta(T,p,N) = \sum_{V} e^{-\betapV} \sum_{i} e^{-\betaE_{i}(V)}$ $= \sum_{V} e^{-\betapV} Q(T,V,N)$	–βG = In∆
Grand canonical	$\begin{split} \Xi(T,V,\boldsymbol{\mu}) &= \sum_{N} e^{\beta\boldsymbol{\mu}N} \sum_{i} e^{-\betaE_{i}(N)} \\ &= \sum_{N} e^{\beta\boldsymbol{\mu}N} \; Q(T,V,N) \end{split}$	βpV = InΞ

We can translate these quantum formulas into quasiclassical expressions that are appropriate for our force-field-based molecular modeling approach.

Recall that the microstate of a classical system is not defined by a quantum state, but rather by the position and momentum of each particle. To get a partition function, we must sum (actually integrate, for the classical case) over all possible microstates.

Example: canonical partition function

$$Q = \frac{1}{N!} \frac{1}{h^{3N}} \int \dots \int d\boldsymbol{p}_1 \dots d\boldsymbol{p}_N \ d\boldsymbol{r}_1 \dots d\boldsymbol{r}_N \ e^{-\beta H}$$

where
$$H\!\left(\boldsymbol{p}^{\left\{N\right\}},\boldsymbol{r}^{\left\{N\right\}}\right) = K\!\left(\boldsymbol{p}^{\left\{N\right\}}\right) + U\!\left(\boldsymbol{r}^{\left\{N\right\}}\right)$$

If we could evaluate this partition function for a model system at various temperatures and volumes, we could obtain thermodynamic properties via

$$-\beta A(\beta, V, N) = \ln Q$$
$$E = -\frac{\partial(-\beta A)}{\partial \beta}\Big|_{V,N}$$
$$\beta p = \frac{\partial(-\beta A)}{\partial V}\Big|_{T,N}$$

However, it is *not even close* to practical to calculate the partition function for a typical system.

Example:

Say we have a system with N=100 atoms, and we wish to evaluate the configurational (\mathbf{r}) part of the canonical partition function. We have 3N=300 coordinates over which to integrate.

Try a Simpson's rule integration, where 10 function evaluations per coordinate are employed (a fairly coarse grid).

of function evaluations = (10)(10)L $(10) = 10^{300}$

$$(10^{300} \text{ operations}) \left(\frac{\text{sec}}{5 \times 10^{12} \text{ ops}} \right) \approx 10^{288} \text{ sec}$$

 $\approx 10^{280} \text{ yrs}$

Not likely in the forseeable future!

Instead, we focus on obtaining averages of properties of interest.

Formalism for simple averages.

One can easily define the average of any property that has a simple dependence on the microstate variables.

For example, in quantum notation

$$\langle B \rangle = \sum_{i} B_{i} \pi_{i}$$

In the canonical ensemble, for example, we have

$$\langle B \rangle = rac{\sum\limits_{i} B_{i} e^{-\beta E_{i}}}{Q}$$

In classical notation, a similar expression can be written for any quantity that has a simple, direct functional dependence on molecular positions and momenta.

$$\left\langle B \right\rangle = \frac{\frac{1}{N!} \frac{1}{h^{3N}} \int \dots \int d\boldsymbol{p}_1 \dots d\boldsymbol{p}_N \ d\boldsymbol{r}_1 \dots d\boldsymbol{r}_N \ B\left(\boldsymbol{p}^{\{N\}}, \boldsymbol{r}^{\{N\}}\right) e^{-\beta H}}{Q}$$

This seems no better than before – we can't calculate the numerator or denominator!

But...

Obtaining simple averages from simulation.

Recall that it is the task of a simulation algorithm to generate microstates in an ensemble, in proportion to their statistical weights (probabilities).

This can be done

- probabilistically (Monte Carlo)
- deterministically (molecular dynamics)*

```
*actually a time average – we'll revisit this issue
```

Either way, given a set of n_{obs} representative microstates, we can write the average of B as

$$\left\langle B \right\rangle = \frac{1}{n_{obs}} \sum_{i=1}^{n_{obs}} B \left(\boldsymbol{p}_i^{\{N\}}, \boldsymbol{r}_i^{\{N\}} \right)$$

as long as those microstates were generated according to the appropriate weighting function π for that ensemble!

The quality of the result that you obtain depends on $n_{\rm obs}.$

Separation of the energy.

In the classical limit, the kinetic energy (K) and potential energy (U) can be considered as separable in the Hamiltonian.

This allows Q to be factored

$$Q = \frac{1}{N!} \frac{1}{h^{3N}} \left(\int \dots \int d\boldsymbol{p}_1 \dots d\boldsymbol{p}_N \ e^{-\beta K} \right) \left(\int \dots \int d\boldsymbol{r}_1 \dots d\boldsymbol{r}_N \ e^{-\beta U} \right)$$

and the momentum part will drop out of averages that depend only on positions.

$$\begin{split} \left\langle B \right\rangle &= \frac{\frac{1}{N!} \frac{1}{h^{3N}} \left(\int ... \int d\boldsymbol{p}_{1} ... d\boldsymbol{p}_{N} \ e^{-\beta K} \right) \left(\int ... \int d\boldsymbol{r}_{1} ... d\boldsymbol{r}_{N} \ B \left(\boldsymbol{r}^{\{N\}} \right) e^{-\beta U} \right)}{\frac{1}{N!} \frac{1}{h^{3N}} \left(\int ... \int d\boldsymbol{p}_{1} ... d\boldsymbol{p}_{N} \ e^{-\beta K} \right) \left(\int ... \int d\boldsymbol{r}_{1} ... d\boldsymbol{r}_{N} \ e^{-\beta U} \right)} \\ &= \frac{\int ... \int d\boldsymbol{r}_{1} ... d\boldsymbol{r}_{N} \ B \left(\boldsymbol{r}^{\{N\}} \right) e^{-\beta U}}{\int ... \int d\boldsymbol{r}_{1} ... d\boldsymbol{r}_{N} \ e^{-\beta U}} \end{split}$$

This is why Monte Carlo, where there is no time, can still be useful in obtaining thermodynamic properties.

Examples of simple averages.

Kinetic energy.

The classical definition is

$$K = \sum_{i=1}^{N} \frac{1}{2m_i} |\mathbf{p}_i|^2$$

So we have

$$\left\langle K \right\rangle = \frac{1}{n_{obs}} \sum_{i=1}^{n_{obs}} K \left(\boldsymbol{p}_i^{\{N\}} \right) = \frac{1}{n_{obs}} \sum_{i=1}^{n_{obs}} \left(\sum_{i=1}^{N} \frac{1}{2m_i} \left| \boldsymbol{p}_i \right|^2 \right)$$

Temperature.

Start with the rigorous definition of $\langle K \rangle$

$$\langle \mathsf{K} \rangle = \frac{\frac{1}{\mathsf{N}!} \frac{1}{\mathsf{h}^{3\mathsf{N}}} \left(\int \dots \int d\mathbf{p}_1 \dots d\mathbf{p}_{\mathsf{N}} \; \mathsf{K} \left(\mathbf{p}^{\{\mathsf{N}\}} \right) e^{-\beta\mathsf{K}} \right) \left(\int \dots \int d\mathbf{r}_1 \dots d\mathbf{r}_{\mathsf{N}} \; e^{-\beta\mathsf{U}} \right) }{\frac{1}{\mathsf{N}!} \frac{1}{\mathsf{h}^{3\mathsf{N}}} \left(\int \dots \int d\mathbf{p}_1 \dots d\mathbf{p}_{\mathsf{N}} \; e^{-\beta\mathsf{K}} \right) \left(\int \dots \int d\mathbf{r}_1 \dots d\mathbf{r}_{\mathsf{N}} \; e^{-\beta\mathsf{U}} \right) }{}$$

$$= \frac{\int ... \int d\mathbf{p}_{1} ... d\mathbf{p}_{N} K(\mathbf{p}^{\{N\}}) e^{-\beta K}}{\int ... \int d\mathbf{p}_{1} ... d\mathbf{p}_{N} e^{-\beta K}}$$

Can show that for $K = \sum_{i=1}^{N} \frac{1}{2m_i} |\mathbf{p}_i|^2$, this reduces to

$$\langle K \rangle = \frac{3}{2} N k_B T$$

The equipartition principle: any contribution to the Hamiltonian that is additive and quadratic will contribute ($k_BT/2$) to the energy. (McQuarrie,1976 pp. 121-123)

So the average temperature is

$$T = \frac{2}{3Nk_{B}} \langle K \rangle$$

Potential energy.

This is simply the interaction potential within and between molecules (intramolecular and intermolecular, respectively). It depends only on the atomic coordinates, not the momenta.

So we may write

$$\left\langle U\right\rangle =\frac{1}{n_{obs}}\sum_{i=1}^{n_{obs}}U\!\left(\boldsymbol{r}_{i}^{\{\!N\}}\right)$$

We may write a similar relationship for any particular component of the potential energy. For example, for a polymeric system we may be interested in the torsional component of the potential:

$$\langle U_{\text{tors}} \rangle = \frac{1}{n_{\text{obs}}} \sum_{i=1}^{n_{\text{obs}}} U_{\text{tors}} (\mathbf{r}_{i}^{\{N\}})$$

Pressure.

Pressure can be obtained from the *virial formula* (Allen and Tildesley, 1987)

 $PV = Nk_BT + \langle W \rangle$

where W is the virial

$$W = \frac{1}{3}\sum_{i=1}^N \textbf{r}_i \cdot \textbf{f}_i$$

Usually this is reduced into a form that is independent of origin before application. For example, for pairwise forces, the virial takes the form

$$W = \frac{1}{3} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathbf{r}_{ij} \cdot \mathbf{f}_{ij} \equiv \frac{1}{3} \sum_{i} \sum_{j>i} \mathbf{r}_{ij} \cdot \mathbf{f}_{ij}$$

Three-body and higher forces are more complicated, but similar formulas can be derived.

Chemical potential.

Chemical potential is not a "mechanical variable" – it does not have a "simple, direct functional dependence on molecular positions and momenta."

Calculating the chemical potential of a species from a molecular simulation can be quite challenging; we will discuss this in detail later.

For now, the following definition (in the canonical ensemble) provides a clue on how it might be calculated

$$\beta \mu = -\frac{\partial (-\beta A)}{\partial N} \bigg|_{\beta, V}$$

Ergodicity

Ergodic hypothesis.

"...a large number of observations made on a single system at *n* arbitrary instants of time have the same statistical properties as observing *n* arbitrarily chosen systems at the same time from an ensemble..." (McQuarrie,1976)

time average \Leftrightarrow ensemble average

We believe that it "holds for all many-body systems in nature." (Chandler, 1987)

Implications for molecular simulation.

(Allen and Tildesley, 1987; Frenkel and Smit, 1996)

molecular dynamics simulation in time average over snapshots in time

Monte Carlo

probabilistic walk through configurations average over (properly weighted) configurations

When we simulate a given model system under a given set of macroscopic constraints, we should get statistically identical results from MD and MC.

Ergodic problems in molecular simulation.

It is possible for your simulation to become effectively "stuck" in certain regions of phase space $(\mathbf{r}^{\{N\}}, \mathbf{p}^{\{N\}})$ and not explore other regions of importance.

(Figure by D.A. Kofke)

This can happen because of

- effective (kinetic) barriers
- true disconnects in phase space of model

When it happens

-the simulated system is effectively (or truly) *non-ergodic*

-you may have phase space sampling problems

-fail to achieve a representative sampling of microstates

- calculated averages are not true averages of your model system.

Phase-space sampling problems can occur with both MD and MC algorithms. There are several ways to look for, and avoid, such problems.

Molecular dynamics

- increase simulation time
- vary starting conditions
- use annealing

Monte Carlo

- same remedies as MD, plus...
- use special (bolder) algorithms

Role of simulation, re-visited

For a given model system, the tasks of a molecular simulation are to:

(1) Sample microstates within an ensemble, with the appropriate statistical weights

(2) During the sampling, calculate and collect molecular-level information that aids in understanding the physical behavior of the system

(3) Employ a large enough sample size to ensure that the collected information is meaningful
(Note: even with today's powerful computers, it is generally impossible to sample all of the microstates of a model system.)