
Introduction

Statistical mechanics: “a branch of physics which
studies macroscopic systems from a microscopic or
molecular point of view” (McQuarrie,1976)
Also see (Hill,1986; Chandler, 1987)

Stat mech will inform us about

- how to set up and run a simulation algorithm
- how to estimate macroscopic properties of
interest from simulations

Two important postulates

- in an isolated system with constant E, V, and N,
all microstates are equally likely.

- time averages are equivalent to ensemble
averages (principle of ergodicity).

The ensemble formalism allows extension of these
postulates to more useful physical situations.
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Ensembles

Ensemble: “the (virtual) assembly of all possible
microstates (that are) consistent with the constraints
with which we characterize the system
macroscopically” (Chandler,1987)

Microstate: the complete specification of a system at
the most detailed level.

In the most rigorous sense, the microstate of a
system is its quantum state, which is obtained by
solving the Schrodinger equation.  Quantum
states are discrete and have discrete
probabilities.

However, the microstate of a classical system is
completely specified by the positions (r) and
momenta (p) of all particles.  Such microstates
are part of a continuum and must be described
with probability density functions.

Note: We will sometimes use quantum notation
for compactness, but the focus of this part of the
course is on classical systems.

Macroscopic constraints: generally, these are
thermodynamic properties (energy, temperature,
pressure, chemical potential, ...)



Role of simulation

For a given model system, the tasks of a molecular
simulation are to:

(1) Sample microstates within an ensemble, with the
appropriate statistical weights

(2) During the sampling, calculate and collect
molecular-level information that aids in understanding
the physical behavior of the system

(3) Employ a large enough sample size to ensure that
the collected information is meaningful
(Note: even with today’s powerful computers, it is
generally impossible to sample all of the microstates
of a model system.)



Microcanonical ensemble.

Constant E, V, N.

According to the first postulate, all of these states are
equally likely.

p i =
1
W

Properties that can be measured over a simulation:
T, p.  And, with more effort, m.

Note: The conjugate variables are the ones that can
be “measured” as outcomes.
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Canonical ensemble.

Constant T, V, N.

Now the boxes may have different energies!

Can show (Hill,1986; McQuarrie, 1976) that the
probability of a state is

p i Ei( ) =
e-bEi

Q , where b = 1
kBT

Properties that can be measured:
E, p.  And, with more effort, m.

The governing equation is
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Isothermal-isobaric ensemble.

Constant T, p, N.

Now the boxes may have different energies and
volumes!

Can show (Hill,1986; McQuarrie, 1976) that the
probability of a state is

p i Ei,Vi( ) =
e-bEie-bpVi

D

Properties that can be measured:
E, V.  And, with more effort, m.

The governing equation is
d S -

E
T -

pV
T

Ê 
Ë 

ˆ 
¯ = -Ed 1

T
Ê 
Ë 

ˆ 
¯ - Vd p

T
Ê 
Ë 

ˆ 
¯ -

m
T

Ê 
Ë 

ˆ 
¯ dN

Walls are
conducting
and  flexible



Grand canonical ensemble.

Constant T, V, m.

Now the boxes may have different energies and
numbers of molecules!

Can show (Hill,1986; McQuarrie, 1976) that the
probability of a state is

p i Ei,Ni( ) =
e-bEiebmNi

X

Properties that can be measured:
E, p, and N.

The governing equation is
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Bridges to macroscopic thermodynamics

Partition functions.
The normalization constants are referred to as
partition functions, and they have (macroscopic)
physical significance.

Summary, in “quantum” notation:

Ensemble Partition
Function

Bridge
Equation

Micro-
canonical

W E,V,N( ) = 1
i

Â S
kB

= lnW

Canonical Q T,V,N( ) = e-bEi

i
Â -bA = lnQ

Isothermal-
Isobaric

D T,p,N( ) = e-bpV

V
Â e-bEi V( )

i
Â

= e-bpV Q T,V,N( )
V
Â

-bG = lnD

Grand
canonical

X T,V,m( ) = ebmN

N
Â e-bEi N( )

i
Â

= ebmN Q T,V,N( )
N
Â

bpV = lnX



We can translate these quantum formulas into quasi-
classical expressions that are appropriate for our
force-field-based molecular modeling approach.

Recall that the microstate of a classical system is not
defined by a quantum state, but rather by the position
and momentum of each particle.  To get a partition
function, we must sum (actually integrate, for the
classical case) over all possible microstates.

Example: canonical partition function

Q =
1
N!

1
h3N ...Ú dp1...dpN dr1...drN e-bHÚ

where
H p N{ },r N{ }( ) = K p N{ }( ) +U r N{ }( )

If we could evaluate this partition function for a model
system at various temperatures and volumes, we
could obtain thermodynamic properties via

-bA b,V,N( ) = lnQ

E = -
∂ -bA( )

∂b V,N

bp =
∂ -bA( )

∂V T,N



However, it is not even close to practical to calculate
the partition function for a typical system.

Example:
Say we have a system with N=100 atoms, and we
wish to evaluate the configurational (r) part of the
canonical partition function.  We have 3N=300
coordinates over which to integrate.

Try a Simpson’s rule integration, where 10 function
evaluations per coordinate are employed (a fairly
coarse grid).

  #  of function evaluations = 10( ) 10( )L 10( ) = 10300

10300operations( ) sec
5 ¥ 1012ops

Ê 
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ª 10280yrs

Not likely in the forseeable future!

Instead, we focus on obtaining averages of properties
of interest.



Formalism for simple averages.
One can easily define the average of any property
that has a simple dependence on the microstate
variables.

For example, in quantum notation

B = Bi pi
i

Â

In the canonical ensemble, for example, we have

B =
Bi e-bEi

i
Â

Q

In classical notation, a similar expression can be
written for any quantity that has a simple, direct
functional dependence on molecular positions and
momenta.

B =

1
N!

1
h3N ...Ú dp1...dpN dr1...drN B p{N},r{N}( )e-bHÚ

Q

This seems no better than before – we can’t calculate
the numerator or denominator!

But…



Obtaining simple averages from simulation.
Recall that it is the task of a simulation algorithm to
generate microstates in an ensemble, in proportion to
their statistical weights (probabilities).

This can be done
- probabilistically (Monte Carlo)
- deterministically (molecular dynamics)*

  *actually a time average – we’ll revisit this issue

Either way, given a set of nobs representative
microstates, we can write the average of B as

B =
1

nobs
B pi

{N},ri{N}( )
i=1

nobs
Â

as long as those microstates were generated
according to the appropriate weighting function p for
that ensemble!

The quality of the result that you obtain depends on
nobs.



Separation of the energy.
In the classical limit, the kinetic energy (K) and
potential energy (U) can be considered as separable
in the Hamiltonian.

{N}( )

This allows Q to be factored

Q =
1
N!

1
h3N ...Ú dp1...dpN e-bK

Ú( ) ...Ú dr1...drN e-bU
Ú( )

and the momentum part will drop out of averages that
depend only on positions.

B =

1
N!

1
h3N ...Ú dp1...dpN e-bKÚ( ) ...Ú dr1...drN B r{N}( )e-bUÚ( )
1
N!

1
h3N ...Ú dp1...dpN e-bK

Ú( ) ...Ú dr1...drN e-bU
Ú( )

=
...Ú dr1...drN B r{N}( )e-bUÚ

...Ú dr1...drN e-bUÚ

This is why Monte Carlo, where there is no time, can
still be useful in obtaining thermodynamic properties.



Examples of simple averages.

Kinetic energy.

The classical definition is

K =
1

2mi
pi

2
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Temperature.

Start with the rigorous definition of K

K =

1
N!

1
h3N ...Ú dp1...dpN K p{N}( )e-bKÚ( ) ...Ú dr1...drN e-bUÚ( )

1
N!

1
h3N ...Ú dp1...dpN e-bK

Ú( ) ...Ú dr1...drN e-bU
Ú( )

=
...Ú dp1...dpN K p{N}( )e-bKÚ

...Ú dp1...dpN e-bKÚ

Can show that for K =
1

2mi
pi

2

i=1

N
Â , this reduces to

K =
3
2NkBT

The equipartition principle: any contribution to the
Hamiltonian that is additive and quadratic will
contribute (kBT/2) to the energy. (McQuarrie,1976
pp. 121-123)

So the average temperature is

T =
2

3NkB
K



Potential energy.

This is simply the interaction potential within and
between molecules (intramolecular and
intermolecular, respectively).  It depends only on
the atomic coordinates, not the momenta.

So we may write

U =
1

nobs
U ri{N}( )

i=1

nobs
Â

We may write a similar relationship for any
particular component of the potential energy.  For
example, for a polymeric system we may be
interested in the torsional component of the
potential:

Utors =
1

nobs
Utors ri{N}( )

i=1

nobs
Â



Pressure.

Pressure can be obtained from the virial formula
(Allen and Tildesley,1987)

PV = NkBT + W

where W is the virial

W =
1
3 ri ⋅ fi

i=1

N
Â

Usually this is reduced into a form that is
independent of origin before application.  For
example, for pairwise forces, the virial takes the
form

W =
1
3 rij ⋅ fij

j=i+1

N
Â

i=1

N-1
Â ≡

1
3 rij ⋅ fij

j>i
Â

i
Â

Three-body and higher forces are more
complicated, but similar formulas can be derived.



Chemical potential.

Chemical potential is not a “mechanical variable”
– it does not have a “simple, direct functional
dependence on molecular positions and
momenta.”

Calculating the chemical potential of a species
from a molecular simulation can be quite
challenging; we will discuss this in detail later.

For now, the following definition (in the canonical
ensemble) provides a clue on how it might be
calculated

bm = -
∂ -bA( )

∂N b,V



Ergodicity

Ergodic hypothesis.
“…a large number of observations made on a single
system at n arbitrary instants of time have the same
statistical properties as observing n arbitrarily chosen
systems at the same time from an ensemble…”
(McQuarrie,1976)

time average Û ensemble average

We believe that it “holds for all many-body systems in
nature.” (Chandler,1987)

Implications for molecular simulation.
(Allen and Tildesley,1987; Frenkel and Smit,1996)

molecular dynamics
simulation in time
average over snapshots in time

Monte Carlo
probabilistic walk through configurations
average over (properly weighted) configurations

When we simulate a given model system under a
given set of macroscopic constraints, we should get
statistically identical results from MD and MC.



Ergodic problems in molecular simulation.

It is possible for your simulation to become effectively
“stuck” in certain regions of phase space (r{N},p{N}) and
not explore other regions of importance.

(Figure by D.A. Kofke)

This can happen because of
- effective (kinetic) barriers
- true disconnects in phase space of model

When it happens
-the simulated system is effectively (or truly) non-
ergodic
-you may have phase space sampling problems

 -fail to achieve a representative sampling of
microstates
- calculated averages are not true averages
of your model system.

phase space



Phase-space sampling problems can occur with both
MD and MC algorithms.  There are several ways to
look for, and avoid, such problems.

Molecular dynamics
- increase simulation time
- vary starting conditions
- use annealing

Monte Carlo
- same remedies as MD, plus…
- use special (bolder) algorithms



Role of simulation, re-visited

For a given model system, the tasks of a molecular
simulation are to:

(1) Sample microstates within an ensemble, with the
appropriate statistical weights

(2) During the sampling, calculate and collect
molecular-level information that aids in understanding
the physical behavior of the system

(3) Employ a large enough sample size to ensure that
the collected information is meaningful
(Note: even with today’s powerful computers, it is
generally impossible to sample all of the microstates
of a model system.)


