ENSEMBLES AND ALL THAT

Physics 664 Statistical Mechanics

Ensembles are mental constructs that contain replicated systems chosen in such a way as
to mimic real systems. There are different kinds of ensembles depending on the nature of
the systems of interest, but all of which have much in common. We will begin by developing
the formalism for the Canonical Ensemble because it illustrates the mechanics of the
problem at hand and is mathematically the most tractable. However, it may be helpful to first
contrast the more elementary but less abstract method often used in introducing statistical
thermodynamics for the first time in the typical undergraduate course on the subject. The
following table compares the ‘System/Ensemble’ method of J. Willard Gibbs (1902) with the
more elementary ‘Particle/System’ method of Boltzmann, 1877.

COMPARISON OF THE ENSEMBLE/SYSTEM FORMALISM VS THE SYSTEM/PARTICLE FORMALISM

ENSEMBLE/SYSTEM FORMALISM SYSTEM/PARTICLE FORMALISM

Stirlings formula is exact as Neysreus— > Nesrmoes << 0 s0 Stirling’s formula is
approximate

Systems are macroscopic so labels are Real particles do not come with labels

okay

Systems can be composed of strongly This formalism assumes weak interactions

interacting particles between particles

S =k log Q(N,V,E) follows logically from S =k log Q(N,V,E) must be postulated

the mathematics and thermodynamics (Boltzmann, 1877)

Harder to describe the ‘single particle’ The single particle partition function is the

partition function since the system partition | natural identity

is the natural identity

First, some definitions:

System:

A hypothetical enclosure of volume V containing N particles at temperature T that is
constructed (mentally) to replicate a real system of interest. The walls of the system are
diathermal and closed. The system has an associated energy state spectrum {Ej} that is
some combination of the constantly fluctuating states of the individual particles making up
the system. We make no assumptions at this point regarding the nature of the particles,
their state or the nature of how they interact — strongly, weakly or not all. Because the
particle energy states making up the system change constantly due to collisions,
interactions and the natural time evolution of the particle wave functions, the specific energy
state of the system will also change with time. What does not change is the spectrum of
possible energies available to the system (the system is isothermal), although again, we
cannot know those details either. Consequently, fluctuations can occur over time in the
mechanical variables like the energy and pressure, but V, N and T remain fixed in our
system.

Canonical Ensemble:
Now consider an adiabatically sealed structure (hence isolated) consisting of Nt (N, — «)

identical systems of the type described above, and all of which are embedded in a common
heat bath and are therefore in thermal equilibrium, i.e., the systems in the ensemble are
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isothermal. All systems are defined by exactly the same T, V, N and energy state spectrum,
{E}}. Furthermore, we assume that the thermal interactions between systems do not
influence their energy state spectrums. Thus, T, V, N and {E;} are the same for all Nt
systems making up the ensemble. Finally we assume the systems are macroscopic and
can be labeled.

Constraints:
Since the ensemble is isolated, it will be characterized by a fixed energy £, = Zn,.Ei where

Et = constant. We can also speak of the number of systems, n;, in the i system energy
state where Zn,. = N, and E; is the energy of the i" system state.

SIMPLE EXAMPLE - THE BABY ENSEMBLE

The following table illustrates the case of four systems A, B, C, and D with an available
energy state spectrum consisting of with only four energies. For purposes of illustration, we
assume nothing about the values of the Ei's, so while Nt = 4 we don'’t specify Et except to
say that it is a constant for the ensemble. We will further assume that our little ensemble is
limited to exactly three possible distributions as seen in the first column of the following
table. It should be noted however that not specifying the energies is equivalent to assuming
that all four energies are the same in which case you can show that the actual number of
possible ensemble states for our ‘Baby Ensemble’ is 256 = (number of states)"” . For now,

three distributions or 17 ensemble states is enough to get a feel for the process.

BABY ENSEMBLE

Ensemble
States

E1

E2

E3

E4

Q )

p = Q(n)
st Q(n)

Dist. 1

ABCD

I

1

117

Dist. 2

AB

12

12117

AB

AC

AC

AD

AD

BD

BD

BC

BC

CD
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Dist. 3

ABD

ACD

BCD




Ensemble State:
An ensemble state is realized by specifying the number of systems, or occupation number
of every energy state in the ensemble. However there is no way to know which systems are

in a specific E; ... for even one system much less for all N, — «, so our only choice is to

assume an a-priori approach where we are forced to assume that every system can visit
every energy state consistent with our constraints on Ny and Er.

Thus in our example above, it is not sufficient to say for example, that Dist. 2 has two
systems in state E4 and one system in each of the states E> and E3 because these systems
are macroscopic, can be labeled and therefore be realized in 12 equivalent ways. In this
case we would say Dist. 2 represents 12 ensemble states or alternatively, Dist. 2 is 12 fold
degenerate. Likewise, Dist.1 can be realized in one way and Dist. 3 in four ways. These
numbers of systems in each distribution are called the ‘occupation’ numbers of the
distributions, viz, if we write (1) ={n,,n,,...} then for Dist. 1: ny =4, Dist. 2: n1 =2, n, =1,

ns = 1. For this simple case we can specifically compute the degeneracy of each
distribution from the usual combinatorial expression Q(n) =N, yHnl.! (see page 22 of your

text) for distinguishable systems. This is how Q(n) in Column 6 of the table was calculated.

The sum of the degeneracy’s over all distributions is then the total degeneracy of the
ensemble.

Thus our example ensemble has some 17 possible ensemble states based on three
possible distributions, but real ensembles have nearly an infinite number of possible
configurations. The question that arises is this: is there a preferred or most probable
distribution amongst the huge number of possibilities? In our little ensemble, Dist. 2 is the
most likely but for real systems it is impossible to know so we are forced to assume, a priori,
the following:

Postulate 1):

All Q. (ensemble) = ZQ(n) ensemble states are postulated to be equally probable.

n)
Ensemble states are generated by specifying how many systems in the ensemble are in
each of the (almost infinite) energy states E4, E;,.. available to every system and consistent
with the constraints on Erand Nt. Thus, in our example, we must assume all 17 possible
states are equally probable.

STATEMENT OF THE PROBLEM:
Our basic goal is to compute P; which can be thought of in following equivalent ways:

o Probability that a system chosen at random is in the i'" energy state E;, or
e Fraction of the systems in the i energy state at any time, or
e Fraction of time that a system chosen at random is in the i'" energy state

Once we have P; we can calculate averages of the mechanical variables like pressure and
energy from the relationship: G =" PG, . This brings us to the second postulate:



Postulate 2):
It is assumed that the time average of any mechanical variable, G[p(%), q(t)]
G,. =G, = 1 L e G[p(),q()ldt where 7 is large enough to eliminate fluctuations,

time
T

is equal to the ensemble average of the same variable, i.e.,

Gtime = Gensemble

= Z PG, where the sum is over all system states.

states

What we need then is an expression for calculating P; for an arbitrary system chosen at
random.

CALCULATION OF P;:

Suppose our ensemble consists of a single distribution and for illustration purposes take
Dist. 2 in the example above to represent our ensemble. Calculation of P;, for all four energy
states is straight forward, viz,

P; for Distribution 2

Pi = ni/NT
Py 2/4
P, V4
Ps Va
P, 0

where Q(n) = Q(n1=2, nz=n3z= 1, n3= 0). In column 2 we used the intuitive relationship for
the probably, P; = n/Ny, for a single distribution but this won’t work for when we want P; for
an ensemble consisting of many distributions. In that case we must include the degeneracy
for each distribution and then sum over all possible sets of occupation numbers. So our next

task is to generalize P, =n;/N; to multiple distributions.

We write now for n;

n summed over all distributions

{total systems in state j of distribution
n,=
J

}: > 1y 2007, ()

Our probability is then,

_ |fraction of systems in state | n,
71 j for all distributions B {total systems in all states of all distributions}
_ > iy 200, (1)
Zstates Z{n} Q(VZ)I’ZJ (}’l)

Example: P, for the Baby Ensemble:

P - [1#4+2*%12+3%4]
DO[1*442%12+3%4]+[0+1%1240]+[0+1*12+ 0]+ [0+ 0 +1*4]
4
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But, for any specific distribution n, we can write,
Zstales Z{n} Q(n)nl (n) = Zstates nj (n)Z{n} Q(Vl) = NT Z{n} Q(Vl)

ie, N, = Z{mm} n,(n) since for any particular distribution, the sum of the n; over all possible

energy states must add to the total number of systems in the ensemble, that is, every
system in the ensemble must be accounted for when we sum over all states for a fixed
distribution.

We finally have our desired recipe for calculating Pj, namely,

2. Qm)n;()
P= 1w
Ny >, QM

and which is a completely general result for an arbitrary ensemble.

The sum in the numerator says: pick a j and then look at the first distribution. Multiply the
number of systems in that distribution by its degeneracy. Then move onto the next
distribution for that same j value. Do this for all distributions for a given j making sure to sum
the values for each distribution. Then divide by the denominator which is just the total
degeneracy times the number of systems. You then have P;.

Applying our expression for P; to our baby-ensemble above, we have:

P, | [1/(417)]~[1-4 + 12:2 + 4:3] = 10/17
P, | [1/(417)]~[12:1] = 3/17

P, | [1/(417)] - [124] = 3117

P, | [1(&17)][41] = 117

Note that the P's sum to 1 as they should. We can also compute the average energy of the
ensemble if we arbitrarily assign some values to the Ej's, eg, if E1=5, E>=10, E3=15 and

E4=20 then E =ZE].Pi = 145/17 = 8.53.

avg

We mentioned earlier that not specifying the values of the Ei's was tantamount to assuming
they were all equal in which case one can show that the total degeneracy is given by

!
Q, = Z{n}—]—VT—' = [number of states]""

Hn.!

n,

and subject only to the restriction that

Zn,:NT

{n}



Thus, our Baby Ensemble really has some 4* = 256 possible energy states — something you
might wish to confirm.

You can also apply our general expression for P; to the previous case where we assumed
the ensemble consisted of only distribution 2, to get P; = [1/(4*12)] x [2*12] = "2 as before.

METHOD OF THE MOST PROBABLE DISTRIBUTION:

The expression for P; that we have just derived is a general expression but as it stands is of
limited value because the sums are not computable due to the fact that the number of
systems is assumed to be infinite. That’s the bad news. The good news is that we can take
advantage of the bad news. It is precisely the immensity of the problem that allows us to use
the remarkable fact that for sums of this kind, there will always exist a single most probable
distribution whose degeneracy is so overwhelmingly much greater than the degeneracy of
all other distributions that our problem reduces to determining only one set of distribution
numbers in our expression for P; First though, we need to justify this extraordinary fact.

PROOF OF THE MAXIMUM TERM METHOD

We now give a short proof of our assertion that ‘only the largest term in the sum need be
considered’, is true. Following McQuarrie (also see Wikipedia — search on ‘Maximum Term
Method in Statistical Mechanics) we define S as the sum over the degeneracy, i.e.,

M
S=>'T, =T, +T,+..+T,, where Ty is positive for all N and the maximum value of T, i.e.

N=1
Tmax, resides somewhere in the set T4 to Ty but where is unknowable due to the immensity
of the problem. For out purposes, it only matters that there is a maximum term. This enables
us to write,

T. <S<MT,,

pust

which says that S is bounded by the maximum term, and the product of the number of terms
M, and the value of the maximum term.

Taking logs of both sides changes nothing in terms of the relative bound so we have,

In7T  <InS<IhM+InT

Now in statistical mechanics we find typically that Tmax~ O(10") where M = 10%° or larger, in
which case we have,

10 <log S <10*° +log M

Thus, we find that In S is bracketed byIn7__ since log M is negligible, that is,

max

InT, <lnS<InT,,



and conclude that InS=InT,_, that is, the sum itself is equal to its largest value, a result

whose importance cannot be overstated.

Another way of viewing this result that emphasizes the nature of the factorial to grow really
big in a hurry (in fact the only reason these approximations work at all is because of this
property of the factorial) is the expression:

limit logz T kl~logM! where, unlike the expression for S above, the sum is

M oy —©

monotonically increasing. Note that again, we are replacing the sum by its largest term. So
how good is this approximation? The error for M=10 is 0.7% and for M=150 it's already
about 0.001%. Assuming the error for M ~1O or greater is vanishingly small we now derive
the expression for the probability of the ' h system state P;

1 > Qm)n;(@)
P=—0 {n}
TNy )Qm)

{n}

Q(n*)n;(n*) B n;(n*) n

1
N, Q@) N, N,

il

where n}f is the number of systems in the jth energy state of the most probable

distribution, and that is precisely what we are after — provided of course that we can figure
how to compute the value of n in the most probable distribution.

Our problem now boils down to determining the set of occupation numbers {n} that
correspond to the most probable distribution which is the one with the largest degeneracy.
In other words we want to maximize,

Om)=

Hn'

subject to the constraints,
> n,=N; and,

> nE=E,

Once we have the set {n*} we have P, = ;—J which is the basis for everything we do from
T

now on.

!
Maximizing Q(n)= Ny

TTn!

i

is done by taking the logs of Q(n), using Stirlings approximation,

adding in the constraints on Ny and Er through the use of Lagrange Multipliers,
differentiating and then solving for the general term n; which maximizes Q. This | leave to
you folks (see problem 1-49 of your text).



Our result, after a bit of mucking about is:

which is the recipe for finding the set of occupation numbers that define the most probable
distribution, (n*). The Lagrange Multipliers, a and B will be discussed in class and in your

text, assuming you bought one.

DW McClure, Emeritus Professor of Chemistry/Physics
Portland State University
2/18/2010



STATISTICAL MECHANICS
Ensemble Homework Problems

1) Consider an ensemble of just 3 systems A, B, and C with three energy states, E¢ E;,
and E; available to each system.

E4 E. Es Q(n) Puist

Dist 1
Dist 2
Dist 3
Dist 4
Dist 5
Dist 6
Dist 7
Dist 8
Dist 9
Dist 10
P;

Here Q(n)= degeneracy of the n" distribution, and Py its probability in the ensemble.

The numbers you are to put into the boxes are the occupation numbers eg, 2,1,0 etc.
assuming no restrictions on Eits. Make sure you can write out all 27 possible ensemble
states in terms of A, B and C corresponding to the 10 possible distributions. Then,
calculate the total degeneracy, . (n), of each distribution and the total degeneracy of

the entire ensemble thus verifying the formula:

!
NT‘ —SNT

z s -
all distributions l I ni '
7 =1

where the only restrictionis: > n, =N,

all distributions

and s = number of energy states available to each system (3 systems and 3 energy
states in this case). How would you rationalize the right hand side of this formula? Now
compute the probability of each ensemble energy state P4, P2 and P3 using:

b L >y M7, (1)
TN Y0

The next problem does assume a restriction on Et as well as Nr.



2) Alittle more realistic problem uses the constraints on Nrand E1. SoletE1=E; =2
and E; = E4=3 and Es=4 where Eiq = 12 and Ny = 4. Again, write out all possible
occupation numbers for the ensemble distributions. Then calculate the degeneracy for
each distribution as before. Finally, calculate the probabilities of all five system states.
Using these results, compute the average energy of a system picked at random from
the ensemble and confirm that it equals E7/Nr.

Eq=2 E,=2 Ex=3 E.=3 Es=4 Q(n) Pist

Dist 1
Dist 2
Dist 3
Dist 4
Dist 5
Dist 6
Dist 7
Dist 8
Dist 9
Dist 10
Dist 11
Dist 12
Dist 13
Dist 14
Etc. ?7?
P;

Using the table compute:

E=> PE =

States
E=E./N, =

Question: what would the total degeneracy, Q_, of the ensemble be if all of the
E/'s were the same?

What would the average energy be in this case?

DW McClure, Emeritus Professor of Chemistry/Physics
Portland State University
1/27/2010
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