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ENSEMBLES AND ALL THAT 
Physics 664 Statistical Mechanics 

 
Ensembles are mental constructs that contain replicated systems chosen in such a way as 
to mimic real systems. There are different kinds of ensembles depending on the nature of 
the systems of interest, but all of which have much in common. We will begin by developing 
the formalism for the Canonical Ensemble because it illustrates the mechanics of the 
problem at hand and is mathematically the most tractable. However, it may be helpful to first 
contrast the more elementary but less abstract method often used in introducing statistical 
thermodynamics for the first time in the typical undergraduate course on the subject. The 
following table compares the ‘System/Ensemble’ method of J. Willard Gibbs (1902) with the 
more elementary ‘Particle/System’ method of Boltzmann, 1877. 
 
COMPARISON OF THE ENSEMBLE/SYSTEM FORMALISM VS THE SYSTEM/PARTICLE FORMALISM 
ENSEMBLE/SYSTEM FORMALISM SYSTEM/PARTICLE FORMALISM 

Stirlings formula is exact as NSYSTEMS→∞ NPARTICLES << ∞ so Stirling’s formula is 
approximate  

Systems are macroscopic so labels are 
okay 

Real particles do not come with labels 

Systems can be composed of strongly 
interacting particles 

This formalism assumes weak interactions 
between particles 

S = k log Ω(N,V,E) follows logically from 
the mathematics and thermodynamics 

S = k log Ω(N,V,E) must be postulated 
(Boltzmann, 1877) 

Harder to describe the ‘single particle’ 
partition function since the system partition 
is the natural identity 

The single particle partition function is the 
natural identity 

 
First, some definitions: 
 
System: 
A hypothetical enclosure of volume V containing N particles at temperature T that is 
constructed (mentally) to replicate a real system of interest. The walls of the system are 
diathermal and closed. The system has an associated energy state spectrum {Ei} that is 
some combination of the constantly fluctuating states of the individual particles making up 
the system. We make no assumptions at this point regarding the nature of the particles, 
their state or the nature of how they interact – strongly, weakly or not all.  Because the 
particle energy states making up the system change constantly due to collisions, 
interactions and the natural time evolution of the particle wave functions, the specific energy 
state of the system will also change with time.  What does not change is the spectrum of 
possible energies available to the system (the system is isothermal), although again, we 
cannot know those details either. Consequently, fluctuations can occur over time in the 
mechanical variables like the energy and pressure, but V, N and T remain fixed in our 
system.  
 
Canonical Ensemble: 

Now consider an adiabatically sealed structure (hence isolated) consisting of NT ( TN  ) 

identical systems of the type described above, and all of which are embedded in a common 
heat bath and are therefore in thermal equilibrium, i.e., the systems in the ensemble are 
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isothermal. All systems are defined by exactly the same T, V, N and energy state spectrum, 
{Ei}. Furthermore, we assume that the thermal interactions between systems do not 
influence their energy state spectrums.  Thus, T, V, N and {Ei} are the same for all NT 
systems making up the ensemble.  Finally we assume the systems are macroscopic and 
can be labeled.  
    
Constraints: 

Since the ensemble is isolated, it will be characterized by a fixed energy T i iE n E  where 

ET = constant. We can also speak of the number of systems, ni, in the ith system energy 

state where i Tn N  and Ei is the energy of the ith system state.  

 
SIMPLE EXAMPLE – THE BABY ENSEMBLE 
The following table illustrates the case of four systems A, B, C, and D with an available 
energy state spectrum consisting of with only four energies. For purposes of illustration, we 
assume nothing about the values of the Ei’s, so while NT = 4 we don’t specify ET except to 
say that it is a constant for the ensemble. We will further assume that our little ensemble is 
limited to exactly three possible distributions as seen in the first column of the following 
table. It should be noted however that not specifying the energies is equivalent to assuming 
that all four energies are the same in which case you can show that the actual number of 

possible ensemble states for our ‘Baby Ensemble’ is 256 = (number of states) TN . For now, 

three distributions or 17 ensemble states is enough to get a feel for the process. 
 

 

BABY ENSEMBLE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Ensemble 

States 

 
E1 

 
E2 

 
E3 

 
E4 

 

Ω (n)  dist

T

Ω(n)
P =

Ω (n)
 

Dist. 1 ABCD - - - 1 1/17 

       

Dist. 2 AB C D - 12 12/17 

 AB D C -   

 AC B D -   

 AC D B -   

 AD B C -   

 AD C B -   

 BD C A -   

 BD A C -   

 BC A D -   

 BC D A -   

 CD A B -   

 CD B A -   

       

Dist. 3 ABC - - D 4 4/17 

 ABD - - C   

 ACD - - B   

 BCD - - A   
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Ensemble State: 
An ensemble state is realized by specifying the number of systems, or occupation number 
of every energy state in the ensemble. However there is no way to know which systems are 

in a specific Ei … for even one system much less for all TN  , so our only choice is to 

assume an a-priori approach where we are forced to assume that every system can visit 
every energy state consistent with our constraints on NT and ET. 
 
Thus in our example above, it is not sufficient to say for example, that Dist. 2 has two 
systems in state E1 and one system in each of the states E2 and E3 because these systems 
are macroscopic, can be labeled and therefore be realized in 12 equivalent ways. In this 
case we would say Dist. 2 represents 12 ensemble states or alternatively, Dist. 2 is 12 fold 
degenerate. Likewise, Dist.1 can be realized in one way and Dist. 3 in four ways. These 
numbers of systems in each distribution are called the ‘occupation’ numbers of the 

distributions, viz, if we write 1 2( ) { , ,...}n n n  then for Dist. 1: n1 = 4, Dist. 2: n1 = 2, n2 = 1,  

n3 = 1.  For this simple case we can specifically compute the degeneracy of each 

distribution from the usual combinatorial expression ( ) ! !T i

i

n N n    (see page 22 of your 

text) for distinguishable systems. This is how Ω(n)  in Column 6 of the table was calculated. 

The sum of the degeneracy’s over all distributions is then the total degeneracy of the 
ensemble.  
 
Thus our example ensemble has some 17 possible ensemble states based on three 
possible distributions, but real ensembles have nearly an infinite number of possible 
configurations. The question that arises is this: is there a preferred or most probable 
distribution amongst the huge number of possibilities? In our little ensemble, Dist. 2 is the 
most likely but for real systems it is impossible to know so we are forced to assume, a priori, 
the following: 
 
Postulate 1): 

All T

{n}

Ω (ensemble) = Ω(n)  ensemble states are postulated to be equally probable.  

Ensemble states are generated by specifying how many systems in the ensemble are in 
each of the (almost infinite) energy states E1, E2,.. available to every system and consistent 
with the constraints on ET and NT. Thus, in our example, we must assume all 17 possible 
states are equally probable. 
 
STATEMENT OF THE PROBLEM: 
Our basic goal is to compute Pi which can be thought of in following equivalent ways: 
 

 Probability that a system chosen at random is in the ith energy state Ei, or 

 Fraction of the systems in the ith energy state at any time, or 

 Fraction of time that a system chosen at random is in the ith energy state 
 
Once we have Pi we can calculate averages of the mechanical variables like pressure and 

energy from the relationship:  i i

i

G PG . This brings us to the second postulate: 
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Postulate 2):  
It is assumed that the time average of any mechanical variable, G[p(t), q(t)] 

0

0

1
[ ( ), ( )]

t

time obs
t

G G G p t q t dt






     where   is large enough to eliminate fluctuations, 

is equal to the ensemble average of the same variable, i.e., 
 

time ensemble i i

states

G G PG    where the sum is over all system states. 

What we need then is an expression for calculating Pi for an arbitrary system chosen at 
random. 
 
CALCULATION OF Pi: 
Suppose our ensemble consists of a single distribution and for illustration purposes take 
Dist. 2 in the example above to represent our ensemble. Calculation of Pi, for all four energy 
states is straight forward, viz,  
                                                        
              Pj for Distribution 2 

 
 
 
 
 
 
where (n) = (n1 = 2, n2 = n3 = 1, n3 = 0). In column 2 we used the intuitive relationship for 
the probably, Pi = ni/NT, for a single distribution but this won’t work for when we want Pi for 
an ensemble consisting of many distributions. In that case we must include the degeneracy 
for each distribution and then sum over all possible sets of occupation numbers. So our next 

task is to generalize j j TP  = n /N  to multiple distributions. 

 
We write now for nj  
 

 

total systems in state j of distribution
( ) ( )

n summed over all distributions
jn

n n n n
j

 
   
 

  

 
Our probability is then,  
 

 

fraction of systems in state

j for all distributions total systems in all states of all distributions

j

j

n
P

 
  
 

 

 

      
 

 

( ) ( )

( ) ( )

jn

jstates n

n n n

n n n








 
 

 
Example: P1 for the Baby Ensemble: 
 

1

[1*4 2*12 3*4]
P 10 /17

[1*4 2*12 3*4] [0 1*12 0] [0 1*12 0] [0 0 1*4]

 
 

          
 

 Pi = ni/NT 

P1 2/4 

P2 ¼ 
P3 ¼ 
P4 0 
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But, for any specific distribution n, we can write, 
 

     
( ) ( ) ( ) ( ) ( )j j Tstates n states n n
n n n n n n N n          

 

i.e., 
 

( )T jstates
N n n   since for any particular distribution, the sum of the nj over all possible 

energy states must add to the total number of systems in the ensemble, that is, every 
system in the ensemble must be accounted for when we sum over all states for a fixed 
distribution.  
 
We finally have our desired recipe for calculating Pj, namely, 
 

 

j

{n}

j

T n

Ω(n) n (n)
1

P = 
N Ω(n)




   

 
and which is a completely general result for an arbitrary ensemble. 
 
The sum in the numerator says: pick a j and then look at the first distribution. Multiply the 
number of systems in that distribution by its degeneracy. Then move onto the next 
distribution for that same j value. Do this for all distributions for a given j making sure to sum 
the values for each distribution. Then divide by the denominator which is just the total 
degeneracy times the number of systems. You then have Pj.   
                                 
Applying our expression for Pj to our baby-ensemble above, we have: 
 

P1 [1/(4*17)] * [1*4 + 12*2 + 4*3] = 10/17 

P2 [1/(4*17)] * [12*1] = 3/17 

P3 [1/(4*17)] * [12*1] = 3/17 

P4 [1/(4*17)] * [4*1] = 1/17 

 
Note that the Pi’s sum to 1 as they should. We can also compute the average energy of the 
ensemble if we arbitrarily assign some values to the Ei’s, eg, if E1=5, E2=10, E3=15 and 

E4=20 then avg i i

i

E = E P  = 145/17 = 8.53.  

We mentioned earlier that not specifying the values of the Ei’s was tantamount to assuming 
they were all equal in which case one can show that the total degeneracy is given by 
 

 

!
[number of states]

!

T

i

NT
T n

i

n

N

n

  


   

and subject only to the restriction that  
 

 
i T

n

n N  
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Thus, our Baby Ensemble really has some 44 = 256 possible energy states – something you 
might wish to confirm.  
 
You can also apply our general expression for Pj to the previous case where we assumed 
the ensemble consisted of only distribution 2, to get Pj = [1/(4*12)] x [2*12] = ½ as before. 
 
METHOD OF THE MOST PROBABLE DISTRIBUTION: 
The expression for Pj that we have just derived is a general expression but as it stands is of 
limited value because the sums are not computable due to the fact that the number of 
systems is assumed to be infinite. That’s the bad news. The good news is that we can take 
advantage of the bad news. It is precisely the immensity of the problem that allows us to use 
the remarkable fact that for sums of this kind, there will always exist a single most probable 
distribution whose degeneracy is so overwhelmingly much greater than the degeneracy of 
all other distributions that our problem reduces to determining only one set of distribution 
numbers in our expression for Pi. First though, we need to justify this extraordinary fact.  
 
PROOF OF THE MAXIMUM TERM METHOD 
We now give a short proof of our assertion that ‘only the largest term in the sum need be 
considered’, is true. Following McQuarrie (also see Wikipedia – search on ‘Maximum Term 
Method in Statistical Mechanics) we define S as the sum over the degeneracy, i.e.,  
 

1 2

1

...
M

N M

N

S T T T T


      where TN is positive for all N and the maximum value of T, i.e. 

Tmax, resides somewhere in the set T1 to TM  but where is unknowable due to the immensity 
of the problem. For out purposes, it only matters that there is a maximum term. This enables 
us to write, 
 

max maxT S MT   

 
which says that S is bounded by the maximum term, and the product of the number of terms 
M, and the value of the maximum term. 
 
Taking logs of both sides changes nothing in terms of the relative bound so we have, 
 

max maxln ln ln lnT S M T    

 
Now in statistical mechanics we find typically that Tmax ~ O(10M) where M ≈ 1020 or larger, in 
which case we have, 
 

20 2010 log 10 logS M    

 

Thus, we find that ln S is bracketed by maxlnT since log M is negligible, that is, 

 

max maxln ln lnT S T   
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and conclude that maxln lnS T , that is, the sum itself is equal to its largest value, a result 

whose importance cannot be overstated. 
 
Another way of viewing this result that emphasizes the nature of the factorial to grow really 
big in a hurry (in fact the only reason these approximations work at all is because of this 
property of the factorial) is the expression: 

max

max

max1
limit log !~ log !

M

kM
k M


 where, unlike the expression for S above, the sum is 

monotonically increasing.  Note that again, we are replacing the sum by its largest term. So 
how good is this approximation? The error for M=10 is 0.7% and for M=150 it’s already 
about 0.001%. Assuming the error for M ≈1020 or greater is vanishingly small we now derive 
the expression for the probability of the jth system state Pj 
 

j

{n} j j j

j

T T T T

{n}

Ω(n) n (n)
Ω(n ) n (n*) n (n*) n1 1

P =
N Ω(n) N Ω(n*) N N


  




 

 

where jn  is the number of systems in the jth energy state of the most probable 

distribution, and that is precisely what we are after – provided of course that we can figure 
how to compute the value of n in the most probable distribution. 
 
Our problem now boils down to determining the set of occupation numbers {n*} that 
correspond to the most probable distribution which is the one with the largest degeneracy. 
In other words we want to maximize, 
 

T

i

i

N !
Ω(n) =

n !
 

 
subject to the constraints, 
 

i T

i

n = N   and, 

i i T

i

n E = E  

Once we have the set {n*} we have 
j

j

T

n
P

N



  which is the basis for everything we do from 

now on. 
 

Maximizing T

i

i

N !
Ω(n) =

n !
 is done by taking the logs of (n), using Stirlings approximation, 

adding in the constraints on NT and ET through the use of Lagrange Multipliers, 
differentiating and then solving for the general term ni

* which maximizes . This I leave to 
you folks (see problem 1-49 of your text). 
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Our result, after a bit of mucking about is:  
 

* jE

j Tn N e e
     

 
which is the recipe for finding the set of occupation numbers that define the most probable 
distribution, (n*).  The Lagrange Multipliers, α and β will be discussed in class and in your 

text, assuming you bought one.  
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