STATISTICAL MECHANICS Ensemble Homework Problems

1) Consider an ensemble of just 3 systems A, B, and C with three energy states, E_{1}, E_{2}, and E_{3} available to each system.

	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{E}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{3}}$	$\Omega(n)$	$\mathbf{P}_{\text {dist }}$
Dist 1					
Dist 2					
Dist 3					
Dist 4					
Dist 5					
Dist 6					
Dist 7					
Dist 8					
Dist 9					
Dist 10					
\mathbf{P}_{j}					

Here $\Omega(n)=$ degeneracy of the $\mathrm{n}^{\text {th }}$ distribution, and $\mathrm{P}_{\text {dist }}$ its probability in the ensemble. The numbers you are to put into the boxes are the occupation numbers eg, 2,1,0 etc. assuming no restrictions on $\mathrm{E}_{\text {total }}$. Make sure you can write out all 27 possible ensemble states in terms of A, B and C corresponding to the 10 possible distributions. Then, calculate the total degeneracy, $\Omega_{T}(n)$, of each distribution and the total degeneracy of the entire ensemble thus verifying the formula:

$$
\sum_{\text {alldistributions }} \frac{N_{T}!}{\prod_{n_{i}=1}^{s} n_{i}!}=s^{N_{T}}
$$

where the only restriction is: $\sum_{\text {all distributions }} n_{i}=N_{T}$
and $s=$ number of energy states available to each system (3 systems and 3 energy states in this case). How would you rationalize the right hand side of this formula? Now compute the probability of each ensemble energy state P_{1}, P_{2} and P_{3} using:

$$
P_{j}=\frac{1}{N_{T}} \frac{\sum_{\{n\}} \Omega(n) n_{j}(n)}{\sum_{\{n\}} \Omega(n)}
$$

The next problem does assume a restriction on E_{T} as well as N_{T}.
2) A little more realistic problem uses the constraints on N_{T} and E_{T}. So let $E_{1}=E_{2}=2$ and $E_{3}=E_{4}=3$ and $E_{5}=4$ where $E_{\text {total }}=12$ and $N_{T}=4$. Again, write out all possible occupation numbers for the ensemble distributions. Then calculate the degeneracy for each distribution as before. Finally, calculate the probabilities of all five system states. Using these results, compute the average energy of a system picked at random from the ensemble and confirm that it equals $\mathrm{E}_{\mathrm{T}} / \mathrm{N}_{\mathrm{T}}$.

	$\mathbf{E}_{\mathbf{1}}=\mathbf{2}$	$\mathrm{E}_{2}=\mathbf{2}$	$\mathrm{E}_{3}=\mathbf{3}$	$\mathbf{E}_{4}=\mathbf{3}$	$\mathbf{E}_{5}=\mathbf{4}$	$\Omega(n)$	$\mathbf{P}_{\text {dist }}$
Dist 1							
Dist 2							
Dist 3							
Dist 4							
Dist 5							
Dist 6							
Dist 7							
Dist 8							
Dist 9							
Dist 10							
Dist 11							
Dist 12							
Dist 13							
Dist 14							
Etc. ??							
$\mathbf{P}_{\mathbf{j}}$							

Using the table compute:

$$
\bar{E}=\sum_{\text {states }} P_{i} E_{i}=
$$

$$
\bar{E}=E_{T} / N_{T}=
$$

Question: what would the total degeneracy, Ω_{T}, of the ensemble be if all of the E_{i} 's were the same? \qquad
What would the average energy be in this case? \qquad

