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9. COMPUTER ROUNDING ERRORS: BASICS 

 It is a given that measurement errors, both systematic and random, 
are always associated with experimental data.  Obviously then, it is 
incumbent upon the investigator to design the experiment with this fact in 
mind so that these errors can be realistically estimated for each variable 
measured. What is not always appreciated, however, is that these 
experimental errors do not form a complete set because of the data 
reduction process. 

By “data reduction” we mean the totality of steps that go into the 
manipulation of the experimental raw data in order to arrive at the final 
results.  This notion is not limited to experimental data either; it applies just 
as well to any theoretical analysis where numerical approximations are 
made along the way.  

The byproduct of this data reduction process is that every level of 
approximation will contribute additional degrees of uncertainty to the 
results.  If these computations also happen to involve the use of a computer, 
then an additional error, which is called ‘computer round off’ or rounding 
error, and is a result of the digitizing process itself, can result for reasons 
that are the subject of this chapter.  

The following examples should give a feel for the importance of this 
topic. 
 
9.1. EXAMPLES OF COMPUTER ERROR  

There are a number of cases of computer rounding errors with 
serious consequences that one might cite [Vui], [Huk09].  For example, the 
failure of the European space Agency’s Ariane 5 rocket which self-
destructed 37 seconds after launch when a program tried to represent a 64 
bit double precision floating point number as a 16 bit short integer. 
Overflow occurred which shut down the guidance system leading to self-
destruction. [Lio]  

Another classic case of rounding error occurred when, during the 
Gulf War in 1991, a Patriot Missile failed to stop a Scud Missile resulting in 
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28 deaths and injuries to nearly 100. The problem was traced to rounding 
inconsistencies in the clock, which after 100 hours accumulated a rounding 
error of 0.3433 seconds. During that interval a Scud missile would travel 
more than a half-kilometer. [Lum] 

 
EXAMPLE (9.1) 

A much more mundane example is the following. When we enter a 
number into computer memory from the keyboard, we can surely expect the 
computer to be faithful to our wishes and save the number without error. Or 
can we? To demonstrate that a problem can sometimes occur, we store a 20-
digit number using double precision, recall the number and then print it to 
obtain: 

   INPUT: 12345678901234567890 
OUTPUT: 12345678901234569000 

Now one could certainly argue that an error in the 17th digit is of 
little consequence, and in a single computation that is generally true. 
However, in the right circumstances, this seemingly trivial error can 
propagate and magnify alarmingly as the next example shows. 

 
EXAMPLE (9.2) 

Suppose you had occasion to evaluate the following integral, 

                                             
1

0
exp( -1)   n

n x x dxI = ∫  

for say, the first 50 values of n. One could apply a standard numerical 
procedure for each integer value of n but the process is tedious at best, and 
in this case, unnecessary. Instead, repeated by-parts integration will 
establish the exact recursion relationship: 
 
          11 −⋅−= nn InI   n = 2, 3,···  
 
which says, if we know a single value of I, say I1, then we can calculate 
each succeeding value of In without having to do any additional integration. 
That's the good news. Now for n = 1, the integral (and this is the only actual 
integration required - also good news) is just a standard form for which I1 
=1/e = 0.367879... . From here on it is a simple matter to calculate that 
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I2 = 0.264241, I3 = 0.207277 and so on until we finally compute that  

I50 = -3.78009 x 1047. Both I2 and I3 are correct to at least the number of 
significant figures given, but, and here's the bad news, the correct value for 
I50 is actually 0.019238···, a difference which represents an error of 
ludicrous proportions. The problem, as we shall see, lies entirely with the 
computer and not with the mathematics. 
 

Our final example illustrates the distinction between round off error 
and truncation error.  By 'truncation error', we mean error which results 
whenever one uses an approximate operation in a numerical method as a 
substitute for an exact operation.  Examples include using a finite number of 
terms in summing an infinite series, or using a polynomial to approximate 
an arbitrary function. 

 
EXAMPLE (9.3) 

In this case, we compute the numerical derivative of loge(x) at x = 1 
with the following code fragment that mimics the formal definition of the 
derivative. 
    
    Code Fragment ( 9.1)   Numerical Derivative 

X=1 
DeltaX=1 
Exact=1                      
DO UNTIL DeltaX < EPS(1)/10  !eps(1) ≅ 1.1x10-16 
   Deriv = [LOG(X+DeltaX)-LOG(X)]/DeltaX 
   Error = Exact-Deriv 
   DeltaX = DeltaX/10 
LOOP 

 
Program output, using double precision, is listed in Table 9.1. 
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                            Table  (9.1)  Rounding  vs Truncation Error  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We see that truncation error, that is, the error associated with 

approximating an infinitesimal with a finite delta x, is very severe at the 
beginning when delta x is large, but, as one would expect, decreases steadily 
until we reach a delta x of about 10-8.  At this point, round off error takes 
over and eventually destroys any hope of an accurate numerical derivative.  

Figure 9.1 is a plot of the Log[absolute error] on the y axis versus 
Log[Delta x]| for about a 100 points. Notice how the truncation error 
decreases in a linear fashion while the round off error increases with a quasi 
random (but reproducible) component.   

 

 
Figure (9.1)  Log[Absolute Error] vs Log[Delta x] 

DELTA X      DERIVATIVE       ERROR 

truncation error dominates 
1E+00            0.6931471806          3.07E-01 
1E-01             0.9531017980          4.69E-02 
1E-02             0.9950330853          4.97E-03 
1E-03             0.9995003331          5.00E-04 
1E-04             0.9999500033          5.00E-05 
1E-05             0.9999950000          5.00E-06 
1E-06             0.9999994999          5.00E-07 
1E-07             0.9999999506          4.94E-08 
1E-08             0.9999999889          1.11E-08 
round off error dominates 
1E-09             1.0000000822         -0.82E-07 
1E-10             1.0000000827         -0.83E-07 
1E-11             1.0000000827         -0.83E-07 
1E-12             1.0000889006         -0.89E-04 
1E-13             0.9992007222          7.99E-04 
1E-14             0.9992007222          7.99E-04 
1E-15             1.1102230246         -0.11E-00  
1E-16             0.0000000000          1.00E-00 
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These last two examples illustrate just how pernicious round off 
error can be, especially if the offending block of computer code is producing 
erroneous output to be used, sight unseen, by other parts of the program. 
Before we discuss why round off errors occur we should first define the 
standard method of reckoning computer errors in terms of their absolute and 
relative values. 

 
9.2. ABSOLUTE AND RELATIVE ERRORS 

Absolute Error is defined here as the absolute value of the difference 
between the exact value of some quantity x (almost always unknown), and 
its approximate measured value x*, that is:  

 
Absolute Error  ≡  AE = |x - x*|                  (9.1) 

 
If the sign of the absolute error is important, and it often is, then the 

absolute value signs are omitted. As an error measure, the absolute error can 
be rather misleading since it does not take into account the magnitude of x 
itself.  For example, an absolute error of 5 cm is probably acceptable when 
discussing the circumference of the earth, but would likely represent a 
disaster if it was the accuracy used to drill a burr hole in brain surgery.  The 
Relative Error overcomes this shortcoming with the definition: 

    Relative Error ≡ RE = Absolute Error/|x| − −
= ≈

* *

*
x x x x
x x

          (9.2) 

where again, the absolute values signs are a matter of choice. The 
approximate form of the relative error recognizes that typically only the 
approximate value x* and an estimate of the absolute error bound are 
known.  When the bound is small, the distinction between the exact and 
approximate relative error is also small, and when large, the whole issue of 
error is probably meaningless. As a final comment, we note that the 
following equivalent expressions are common methods for expressing the 
error in x: 

x = x* ±  AE ,      |x - x*| ≤ AE ,    x* - AE ≤ x ≤ x* + AE   
where the last two expressions use the absolute error as a bound.  In this 
case, one should be careful to always round up to preserve the inequalities.  
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In order to understand the nature of round off error, and hence its 
remedy, we must first understand how a computer stores and processes the 
numbers that we entrust to it. This in turn requires that we briefly review 
alternative number systems because most computers store and manipulate 
numbers in binary, or base 2, and not in base 10. 

 
9.3. NUMBER SYSTEMS AND COMPUTER MEMORY [Kn98], 
[Sa91] 

For an arbitrary base, or radix, B, we can express any number NB in 
that base with the relationship, 

( )− − −
− − −= ± + + ⋅⋅⋅+ + + + ⋅⋅⋅k k 1 0 1 2

B k k 1 0 1 2N a B a B a B a B a B             (9.3) 

where the coefficients ak, ak-1 etc. are integers with the range 0 ≤  aj ≤  B-1.   
Because the sum is infinite, then in principle literally any number, 

integer, rational or irrational, can be expressed, exactly. The number NB is 
then represented using the coefficients of Eq (9.3) with the expression: 

                                  − • − ± ⋅⋅⋅ ⋅ ⋅ ⋅ k k 1 0 1 B
a a a a  

The point '.' just after the a0 term is called the 'radix point', and 
differentiates the integer and fractional parts of the number.  In base 2, the 
radix point is termed the “binary” point, and in base 10, of course, the 
decimal point.  The following examples should illustrate these concepts. 

 
EXAMPLE 9.4 
Decimal: B=10 and 0≤ aj≤9.   
120.45 = 1x102+2x101+0x100+4x10-1+5x10-2 

3.1415... = 3x100+1x10-1+4x10-2+1x10-3+5x10-4+... 
Binary: B=2 and 0 ≤ aj ≤  1.  
22.7510 = 10110.112 = 1x24+0x23+1x22+1x21+0x20+1x2-1+1x2-2 

6.610 = 110.10012··· = 1x22+1x21+0x20+1x2-1+0x2-2+0x-3+1x2-4... 
Hexadecimal: B=16 and 0≤ aj≤15.  
In hexadecimal, unlike decimal and binary, it is necessary to distinguish 
coefficients greater than 9 by non-numeric symbols in order to avoid 
confusion.  This is done by using the letters A,B,..,F to represent the 
numbers 10,11,...,15 respectively.  To avoid confusion with base 10, the 
letter 'h' is also appended to a hexadecimal number.  For example, 
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     29653.7187510 = 73D5.B8h = 7x163+3x162+13x161+5x160+11x16-1+8x16-2  

 
Hexadecimal, or hex for short, is commonly used to represent binary 

numbers in a compact form. This can be appreciated in light of the previous 
example where the number 29653.7187510 = 73D5.B8h, reads in binary, 
11100111101011.10111.  This is a factor of roughly 3 in information 
compression and illustrates the value of hex.      
 
9.3.1. Normalized Form of NB 

Eq. (9.3) can be re-written in what is called a 'normalized' form, by 
shifting the radix point to a position such that the first non-zero digit appears 
just to its right, and then compensating for this shift by multiplying by the 
base raised to a suitable power. The normalized form of Equation (9.3) then 
reads (dropping the ±  and taking the sign to be understood): 

 

                               - -1 -2
1 2

1

i e
B i

i

eN a B B a B a B B
=

∞   = = + + ⋅⋅⋅    
∑               (9.4) 

  
where NB now has the representation 

 [ ]• 1 2
e

B
a a B⋅ ⋅ ⋅ .                      (9.5) 

 
The coefficients in Eq (9.5) now have the range: 1≤a 1≤B-1,  

0≤ak ≤B-1 for k=2,3,..., and e is the appropriate normalizing exponent. For 
example, in base 2, a1=1 and a2, a3,.. can equal 0 or 1, whereas in base 10, a1 
can equal 1, 2, .., 9 and a2, a3,... can equal 0, 1, 2, ..., 9.   

 
Normalization of a number in base 10 is a simple matter of using 

scientific notation to fix the decimal before the first non-zero digit, as in 
 

                                      0.00052345610 = 0.523456 x 10-3 
 

In base 2, or any other base for that matter, exactly the same concept 
applies; for example: 101.1012 = 0.101101 x 23 or 0.00011012 = 0.1101 x 2-3  
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The importance of normalization lies in the fact that computers 
represent numbers containing decimals, that is, 'floating-point' numbers, 
using some method of normalization.  We will return to this topic later when 
we discuss the storage of these numbers in computer memory. 

It should also be clear that the largest value that NB can represent, 
for a  given exponent, corresponds to the situation where all of the 
coefficients in Equation (9.5) are set equal to B-1, while the smallest non-
zero number occurs when a1=1 and all of the other coefficients equal zero. 

 
9.3.2. Precision [Ko93] 

As indicated, Eq (9.3) can, in principle, represent any number 
without approximation.  However, there are times where we have no choice 
but to limit, or approximate the number of digits in a number.  For example, 
this will happen whenever a number is irrational like π , e or 2 , or when 
the number contains an infinite number of repeating digits such as 1/3 or 
2/3, or, from an experimental point of view, when the accuracy of the 
number is the limiting factor. 

We denote this limiting of the length of the number NB to a precision 
of p digits, by re-writing Eq (9.4) to read,  

 

      1 2
1 2

1

i e p e
B i p

i

p

N a B B a B a B a B B− − −

=

 
 ≅ = + + ⋅⋅⋅+   

 
∑              (9.6)      

 
Clearly, for a fixed value of p, if a number has p or fewer digits, it 

can be represented exactly; otherwise its representation will be approximate. 
             For example, π, correct to a precision of 6 base 10 digits, would be 
written according to Eq (9.6) as:     
               

             π

 =


≅ =
 =

1

1

2

0.314159 x 10 (base 10,p 6)

0.1100100100001111111 x 2 (base 2,p 19)

0.3243F9 x 16 (base 16,p 6)
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whereas π is approximated as 3.125 if expressed to a precision of 6 binary 
digits. 
 
Comment              

Certain binary numbers like 6.610 = 110.100110012…, or  
0.110 = 0.0001100110011002…, are the binary equivalents of a non-
terminating base 10 fraction like 1/3. These numbers have no exact binary 
image which means that it will be impossible to exactly represent them in a 
computer no matter how many bits are available for storage. It is also 
interesting to note that the non-terminating feature of a fraction is a function 
of the base in which the number is represented. Table 9.2 illustrates this 
point with the base ten fraction 2/3.  

 
Table  (9.2)  2/3 to Different Bases                        

BASE REPRESENTATION 
 2    0.1010101... 
 3   0.2 
 4    0.2222222... 
 5   0.3131313... 
 6   0.4 
 7   0.4444444... 
 8   0.5050505.. 
 9   0.6 
10   0.6666666... 

 
The reader might find it instructive to extend Table 9.2 through base 16.  

 
9.3.3. Computer Memory and Binary Number Storage [Ko93] 
            We have just seen that the larger the base, the greater the amount of 
information carried by each digit. Thus, as we have just seen, π to six digits 
in base 10 requires 19 digits in binary; and a trillion (1x1012) requires 13 
base 10 digits and some 39 base 2 digits. In general it takes roughly 3 binary 
digits to represent a single base 10 digit.  However, inefficiency aside, it is 
precisely because binary has only two possible coefficients, 0 and 1, that it 
is ideal for representation by a two-state device. These two states might, for 
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example, be represented by the conducting or non-conducting modes of a 
solid state device like a diode. 

A binary digit, that is, a 0 or 1, is called a 'bit' (contraction of BInary 
digiT) and represents the smallest piece of information that can be stored in 
computer memory.  One way to picture this storage is to use a diagram like 
the following where each slot, or memory location, can hold a single bit.     

 
When we denote a string of binary digits in this way, we are 

implicitly associating them with an equivalent group of solid state elements 
whose on-off states mimic the pattern of 0's and 1's representing the number.  
Obviously, the more precisely we choose to store a number, the more bits 
we will need to have available to represent the number in memory.  
However, as we shall see, memory is strictly limited, which implies a 
definite constraint on precision.  Furthermore, we shall see that this 
limitation on computer memory is the root cause of round off error. While 
the bit is the least amount of storable information, it is the BYTE, which 
consists of eight bits, that is the least amount of information that is routinely 
manipulated by a computer at one time.  Half of a byte (four bits - which 
correspond to a single hexadecimal digit) is referred to as a NIBBLE, but 
that is as far as the gastronomic similes go. 

A modern computer's WORD size or length, which is usually an 
integer multiple of the byte, represents the number of bits that the computer 
typically manipulates as a single block.  This quantity, which is a 
characteristic of a particular computer’s architecture, determines in part the 
computer's speed because, all else being equal, the more bits that can be 
processed as a single unit, the fewer the overall number of operations 
required for a given computation.  One of the first computers - the ‘1887’ 
Babbage Analytical engine used a word of size 50 decimal digits as did 
many of the machines of the 1940’s and 1950’s. Others, depending on the 
manufacturer, used binary, and in some cases, there was no limit at all on 
the size of the computer word. Today’s PC’s all use a 32 or 64 bit word. 
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9.4. HISTORICAL INTERLUDE: CPUs, COPROCESSORS AND 
ALL THAT [Hmc], [Ov01] 

Before continuing with our development of the subject of computer 
error, it is worth pausing to make a few comments on how computers do 
arithmetic at the machine level.  The following description will be confined 
to the operation of the PC, partly because of its ubiquity but also because the 
PC shares basic features common to all computers so there is no significant 
loss of generality when describing its operation.   

The heart of any computer is its central processing unit or CPU for 
short.  In the case of the  IBM PC, the CPU chips that form the heart of the 
series (designated as the 80x86 family) consist of three parts: an arithmetic 
and logic unit, or ALU, timing and control circuits and a series of registers.       

For example, the INTEL 8088 CPU, which was the microprocessor 
used in the original PC, had some fourteen 16 bit registers.  Of these 
fourteen, the four scratch-pad registers are used as a temporary working 
area, particularly for arithmetic operations.  The other 10 registers perform a 
variety of duties, such as keeping track of where current data and program 
code are located in memory.  

The instruction set for the 8088 chip supported only single and 
double precision integer addition, subtraction, multiplication and division.  
This means that if we want to do arithmetic with real, or floating-point 
numbers, which are numbers containing decimals, we must do so by writing 
software routines that tell the CPU, in precise detail, exactly how to do this 
arithmetic. The solution to this vexing problem was the introduction of the 
Intel 8087 math coprocessor chip which was designed to handle floating 
point arithmetic operations without the need for additional software, and 
which was designed to function in combination with the 8088 chip. 

However, before we can worry about the issue of how to do 
arithmetic with floating-point numbers, we must first decide on how to 
represent these numbers in memory. This is not a trivial problem as 
evidenced by the many different and incompatible formats used by 
computer manufactures over the years and well into the 1970’s. The obvious 
need for a consistent format resulted in extensive collaborations from the 
late 1970’s to the early 1980’s between academic computer scientists and 
their counterparts in the computer industry. The outcome of this remarkable 
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cooperation was the eventual adoption of the ANSI/IEEE (ANSI = 
American National Standards Institute, IEEE = Institute for Electrical and 
Electronics Engineers) Standard published in 1987 and known as the 
ANSI/IEEE Std 854-1987. The Standard specifies, in great detail, the 
accuracy with which computations are to be done, how rounding is to be 
carried out, error and exception handling and how numbers are to be 
represented in memory as well as other issues germane to accurate floating-
point arithmetic. Incidentally, the ANSI/IEEE standard does not address 
how integers are stored in computer memory. 

As mentioned earlier, in 1980, and well prior to the final 1987 
ANSI/IEEE Standard, the Intel Corporation produced the first math 
coprocessor, the 8087. The 8087 implemented the ANSI/IEEE Draft 
Standard in a single integrated circuit that worked in conjunction with the 
8088 CPU.  The primary purpose of the coprocessor was to enable the 
computer to do highly accurate and very fast floating-point arithmetic.  As a 
result, the IBM PC was transformed from a machine that was largely 
undistinguished from the competition to a computer that was able to 
perform computations that had previously belonged to the world of 
mainframes.  Since the 8087, a math coprocessor has since been produced 
for each new member of the 80x86 family (through the 80386), of CPU's, 
and in each case, the chip implemented the ANSI/IEEE Standard for Binary 
Floating-point Arithmetic.   

Starting with the 80486 DX, the math coprocessor became an 
integral part of the CPU and given the name ‘floating point unit’, or FPU for 
short. This integration made floating point computations much faster and 
more efficient. Each coprocessor or FPU, and its corresponding CPU, shares 
the same address and data bus permitting the coprocessor to constantly 
monitor the CPU's data stream. When a special 'escape code' is encountered, 
the coprocessor knows that a floating-point instruction is on the way, and 
can act accordingly. 

Like the CPU, the coprocessor also has a number of registers that 
provide the workspace for computation, as well as an elaborate instruction 
set that can be manipulated through assembly language routines. This 
instruction set includes the basic addition, subtraction, multiplication, 
division and square root operations, as well as a number of auxiliary 
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operations like rounding, absolute value etc. There are also a number of 
specialized instructions, which are very coprocessor model dependent. 
These include instructions for operating with logarithmic, exponential, 
trigonometric and hyperbolic functions.  

The exact number and function of the coprocessor registers is a 
function of the specific chip, but they all contain at least eight numeric data 
registers (the IA 64 bit Itanium chip has, for example, 128 registers), each of 
which is 80-bits wide.  These are used to hold numeric operands in what is 
called 'extended precision'.  The relevance of this statement, and we shall 
come back to this later, is that the coprocessor does extended precision 
arithmetic using 80-bits to represent each floating-point number.  The 
numeric result of a computation is then stored in 32 or 64-bit memory.  
Since arithmetic is done with much greater precision than the subsequent 
storage of the result, we can make the assumption that basic floating-point 
arithmetic operations are exact.  The importance of this assumption will be 
clear later when we discuss extended floating-point arithmetic.  

We now continue our development of round off error by next 
addressing the issue of how numbers are stored in memory.  However this 
first requires a brief review of a couple of simple topics in binary arithmetic.   
 
9.5. BINARY ARITHMETIC [Ja62], [Sa91], [Kn98], [Ko93] 

Base 2 numbers can be added, multiplied, subtracted and divided 
according to rules similar to those that apply to base 10 numbers. However, 
for our purposes here, we need only consider addition and the use of 
complements for subtraction.   

 
The rules for binary addition are very simple, namely, 

                                0+0=0;   1+0=0+1=1;  1+1=0 carry 1 .      
For example,  
carries:                             11   1 1 111   1 1 

                                                        110011101.001  41310   
                                                          10110111.011  18310          
                                                      1001010100.100  59610    
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9.5.1. Complements/Subtraction 
Most computers store negative numbers in what is called two's complement 
form. The motivation for this method of representation is that it allows the 
computer to treat addition and subtraction identically in that borrowing 
between columns is unnecessary. This has advantages from the viewpoint of 
hardware design. 

The definition of two's complement is based on the requirement that 
in order for the sum of two numbers to be zero, one number must be the 
negative of the other. That is, any positive number plus its complement is 
zero, provided that the number of bits used to represent the number and its 
complement is fixed by the size of the computer's storage registers so that 
any overflow bit will be automatically discarded.  

 
9.5.2. Rules for Constructing Two's Complement 

Given a binary number N2, the two's complement is formed by the 
procedure: 

 1. Begin by right justifying your number to match the word size. If 
the number is less than the word size, add zeros to the left to fill the allotted 
space. Now change all of the 1's to 0's, and all of the 0's to 1's.  This is called 
“one's complement”.   

2. Add 1 to the least significant bit (i.e., the right-most bit).  We now 
have “two's complement”. This result when added to another base 2 number 
is equivalent to subtraction provided the top bit is discarded if it exceeds the 
word size. From a hardware point of view, it is much easier to subtract by 
adding complements than use the ‘carry’ method common to base 10 
subtraction. 

 
By way of example, consider the simple case of 16-5=11, i.e., 10000-00101 
in base 2. Assuming a 5 bit storage register, we obtain the complement of 
00101 using our rules to get 11011 which, when added to 10000 gives 
01011 = 11. It is easy to see the advantage of complements from a hardware 
point of view. 
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9.6. INTERNAL STORAGE OF NUMBERS 
Computers distinguish between how they store integers and floating-

point numbers.  
 
9.6.1. Integers 

The number of bits used for integer storage is usually the same as the 
computer's word size. For example, a computer with a 32 bit word will use 
32 bits for the storage of every integer whose length does not exceed 32 bits, 
and, in addition, that storage is exact.  
 
9.6.2. Properties of Stored Integers 

One may easily verify that the range and number of integers, I, 
compatible with a computer of word length w, using two's complement 
storage for negative integers and a signed first bit, is:  

 
• range of integers:  -2

w-1 ≤  I ≤  2
w-1

-1  
• total number of positive or negative integers: 2

w-1
 

• total number of positive and negative integers: 2
w 

 
For example, suppose we have a computer with 4 bit word,  

(i.e., w=4) of which the first bit is the sign bit leaving 3 bits available for 
integer storage. 

Thus, our integers can range from -23 to 23-1, or -8≤ I≤7.  The other 
two properties tell us that there are 8 of each sign (0 is taken as positive) for 
a total of 24= 16. Using two's complement for the negative integers, we 
have: 

 
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 0000, 0001,…, 0111           

-8     -7       -6       -5       -4       -3      -2       -1        0      +1           +7      
 

Note that each negative number is constructed from its positive 
equivalent by taking the two's complement, and that each number and its 
complement add to zero.  The negative sign is taken care of automatically 
since we have chosen to represent a positive integer by a 0.  
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9.6.3. Integer Storage Details [K093], [Sa91] 
There are different ways to store integers, but it is most common to 

store positive integers directly as written in binary and then use two's 
complement for the negative integers.  The numbers are then stored 'right 
justified' in word length registers with zeros added to the left to fill the 
unused storage locations. The first bit is used to represent the sign of the 
integer, and is either a 0 (said to be 'unset') if the number is positive, or a 1 
('set'), if negative as we have already indicated.   

 
For example, the number 437 base 10 would be stored in a 16 bit 

register as:   

 
whereas - 437 would be represented using two's complement, as:  

                   
 
Note that in constructing the two's complement from the positive 

integer, the filler 0's are also changed to 1's, and that the sign bit is now a 1. 
An alternative, but less common format to the use of two's 

complement is to store a negative integer in exactly the same form as a 
positive integer except for a 'set' leading bit to indicate a negative number. 
Representation of positive and negative numbers in this fashion is termed 
'sign-magnitude' format.  

 
9.6.4. Floating-Point Numbers [Ov01], [Go91] 

Floating-point numbers or ‘real’ numbers are ones that contain 
decimals. As we indicated, the primary purpose of the ANSI/IEEE Std 854-
1987, apart from addressing the need for consistency, was to make floating-
point arithmetic and storage as accurate and predictable as possible.   
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a) Definition of a Floating-point Number 
A base 2 floating-point number, N2, is expressed as the product 
 

     N2 = f * 2e 
 
and consists of two parts - a signed normalized fractional part, f, and a 
signed integer exponent, e. Here the normalized fraction f is called the 
significand or mantissa, and has a range of values that depends on the 
method of normalization. 
 
b) Normalization    

We have already introduced the concept of normalization with the 
comment that floating-point numbers are stored this way.  The question is 
why? 

First - there has to be a binary point somewhere and that 'somewhere' 
must be pre-determined in a consistent fashion for all possible floating-point 
numbers.  This is because there is no way to specifically designate the 
binary point in memory apart from using ones and zeros which are already 
used to represent the number itself.  The obvious solution is then to fix the 
absolute position of the binary point in the storage register and then force 
the number to conform to this format. 

Second - fixing the binary point at the beginning of the number 
maximizes its precision by maximizing the number of bits used for its 
representation. We are now ready to see how floating-point numbers are 
stored. 

There are two common methods of normalization. The procedure 
introduced earlier, and which we will call, for lack of better phrase, the Non-
Standard format, fixes the binary point just before the first non-zero digit, 
and the ANSI/IEEE Standard, which recommends fixing the binary point 
just after the first non-zero digit.  For example, the binary number, 101.101 
would be normalized as 0.101101 x 23 according to the Non-Standard 
format, and as 1.01101 x 22 using the Standard format.  The Standard also 
calls for suppressing the leading bit (since it is always a 1) so the number is 
now be written .01101 x 22. Since storage registers are of fixed length, this 
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has the advantage of increasing the available storage, and hence the 
precision, by one additional bit.  

Table 9.3 summarizes the properties of these two methods of 
normalization.  
  
    Table  (9.3)  Common Normalization Methods 

FORMAT RANGE OF f2  RANGE OF f10  FORM OF N2 

NON-STANDARD 0.100..02 to 0.111..12 (1/2 ≤ f10 < 1) N2 =.1ddd..d * 2
e
 

ANSI/IEEE  1.000..02 to 1.111..12 (1 ≤  f10 < 2) N2 =.dddd..d * 2
e
 

 
The reason we introduce the alternative to the ANSI/IEEE 

normalization format is that it is common to most texts that discuss floating-
point arithmetic and round off error. It is also less awkward from the 
viewpoint of notation than the ANSI/IEEE Standard with its repressed 
leading bit and de-normalized numbers to accommodate gradual underflow 
etc. Since the method of normalization is unimportant as it pertains to the 
origin of round off error, we will often use Non-Standard normalization for 
purposes of illustration. Care will be taken to specify which method is being 
used. 

 
Depending then on the method of normalization, our binary number 

N2, will be written, 
≤

=  ≤ <

10

10
2

e 1/2 f <1 Non-Standard
N f 2   where  *

1 f 2 ANSI/IEEE
         (9.7) 

 
c) Floating-point Storage 

With Non-Standard Normalization and Eq (9.6), we can write an 
arbitrary binary number to a precision of p digits as: 

 

i e 1 2 p e
2 i 1 2 p 1 k

p

i 1
N a 2 2 a 2 a 2 a 2 2 where a 1, a 0 or 1  for k > 1− − − −

=

 
 = = + + ⋅⋅⋅+ = =   

 
∑  , 

 
which on comparison with Eq (9.7) identifies the normalized fraction f, as 
the sum:                                    
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                                  i 1 2 p
i 1 2 p

p

i 1
f a 2 a 2 a 2 a 2− − − −

=
= = + + ⋅⋅⋅+∑         (9.8) 

Since, according to Eq (9.5), the binary representation of N2 is just 
the set of coefficients in Eq (9.8), each of which is stored as a single bit, it 
follows that the precision p, in Eq (9.8) can be identified as the number of 
bits used to store N2.  Clearly then, the more bits available for storage, the 
greater the precision. 
 

Just how many bits are typically available to store floating-point 
numbers?  Table 9.4 compares the basic single and double precision formats 
recommended in the ANSI/IEEE Standard. Incidentally, there are also two 
implementation-dependent 'extended' formats recommended, but they are 
not included here.[Ov01]   
 
    Table  (9.4)  ANSI/IEEE Basic Floating-Point Storage Formats 

PARAMETER SINGLE FORMAT DOUBLE FORMAT 
Mantissa bits, p+1                24                  53 
Exponent bits, t 
Total bits, p+t+1 

                8 
              32 

                 11 
                 64 

Range of exponent, e 
Exponent bias         

     -126 to +127  
            127 

      -1022 to +1023 
               1023 

Range of biased exponent          1 to 254             1 to 2046 
 
From Table 9.4, we see that the total number of bits used to store a 

floating-point number is the sum of the exponent bits, t, the mantissa bits, p, 
and the mantissa sign bit, for a total of p + t + 1.  The concept of ‘Exponent 
bias’ in column 1 will be explained shortly.  

Table 9.4, together with Figure 9.2, illustrate how the mantissa and 
exponent are partitioned in double precision where p + t + 1= 64 bits. Of 
these 64 bits, 11 are used for the exponent, leaving 53 available to represent 
the mantissa (52 bits) plus its sign (1 bit). The precision p, which again is 
the upper index in Eq (9.8), is equal to either 52 or 53 depending on the 
method of normalization viz., 52 for the Non-Standard format, and 
52+1(suppressed bit) = 53 for the ANSI/IEEE format.  
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Figure (9.2)   Double Precision Storage Format 

 
From Figure 9.2, we see that bit m1 is reserved for the sign of the 

mantissa, bits e1 through e11 are used to store the exponent e, usually in 
biased form, and bits m2 to m53 represent the mantissa in normalized form. 
As drawn, Figure 9.2 represents the Non-Standard format. The ANSI/IEEE 
Standard would modify Figure 9.2 by repressing bit m2 , which is a 1, and 
then shifting each of the bits from m3 to m53 left one slot.  This leaves m53 
available for storage of an additional bit that would not be available in the 
Non-Standard format.  The exponent is also modified since e is now one less 
than in the Non-Standard format.  We now look at this storage process in 
greater detail.  
 
d) Coding the exponent 

The exponent e is an integer, which may be positive or negative, and 
may be stored using the formats we have already discussed for integers.  
However, there are disadvantages with these schemes. Whenever two 
numbers are to be added or subtracted, a comparator must be used to 
determine the magnitudes of the exponents. This is because, just as is the 
case in scientific notation, the exponents must agree before addition or 
subtraction can be carried out. This comparison process would be less 
complicated if the exponents were always positive. 
 
e) Exponent Bias 

The exponent bias (also called the “excess”) is defined in such a way 
as to ensure that the biased exponent is always positive, namely,  

 
biased exponent ≡  b.e. = e + bias  
 

The following examples illustrate how biasing works.  
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(i) Since e is an integer, it can be represented by the exponent range 
characteristic of integer storage using two's complement, 

 
  -2

t-1
≤ e≤ (2

t-1
) -1                            (9.9)  

 
where t is the number of bits used to store the exponent.  Since the least 
exponent is -2

t-1
, we define the bias as +2

t-1
, so our biased exponent now 

reads: 
 

 b.e. = e + 2
t-1 

 
which is always positive. For example, according to Table 9.4, if we take 
t = 11 (double precision), then our bias is 210 = 1024, the biased exponent is 
given by, 
 

 b.e. = e + 1024 
 

and we would describe the storage of the exponent in terms of  “excess 
1024”  notation. Furthermore, the biased exponent now has the range 
 0≤b.e.≤2047 corresponding to -1024≤ e≤1023. Note that negative values 
of e correspond to values of b.e. < 1024.  

 
(ii) Alternatively, if we take the ANSI/IEEE double precision bias*

 

 
of 1023 from Table 9.4, our biased exponent would read 

    biased exponent = e + 1023 
 
 In this case, 1≤b.e.≤2046 corresponding to the exponent range 

given in Table 9.4. Here, values of the biased exponent less than 1023 
correspond to negative values of e. The bias might seem complicated, but all 
we are doing is ensuring that the least exponent is positive. 

                                                           
*  The ANSI/IEEE Standard bias and exponent range differ from that given by Eq 9.9 in 
order to ensure that the reciprocal of any normalized floating-point number does not cause 
underflow. 
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f) Storing the Exponent 
In any case, once the exponent has been biased it is then converted to 

binary, and stored right-justified using bits e1 through e11 (or e1 through e8 in 
single precision) in the exponent field. A sign bit is now unnecessary since 
biased exponents are always positive.  
 
g) Storing the Mantissa 

The mantissa is usually stored left justified by encoding the number 
in sign-magnitude format, i.e., exactly as written in binary with a signed first 
bit. The sign of the mantissa is fixed by the value of the bit m1, which is 0 if 
positive and 1 if negative. This whole process is considerably more difficult 
to describe than it is to perform as the following example illustrates. 
 
EXAMPLE (9.5) 

Suppose we want to code the number -50.375 in single precision 
(t=8), using both the ANSI/IEEE Standard, and the Non-Standard format, 
for comparison.  The Non-Standard bias will be based on Eq (9.9) and the 
ANSI/IEEE bias is taken from Table 9.4 using the following procedure: 
a.Write the number in normalized binary form: 
     -50.37510 = - 110010.0112 = - .1100100112 x 26  NON-STANDARD 
                                                  = - 1.100100112 x 25  ANSI/IEEE 
 
b. Bias the exponent: 
     b.e. = e + 2

t-1
 = 6 + 28-1 = 13410 = 100001102   NON-STANDARD  - Eq 9.9 

     b.e. = e + 127 = 5+127  = 13210 = 100001002   ANSI/IEEE - Table 9.4 
             
c. Write the mantissa as it will be coded: 
     f = 1 110010011   NON-STANDARD 
     f = 1 100100110   ANSI/IEEE 
 

The underlined 1 denotes that our number is negative.  Note that the 
leading bit for the ANSI/IEEE format has been dropped so an extra 0 must 
be added to the end of the number. We now store our number using left-
justification for the mantissa: 
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NON-STANDARD

 

       

ANSI/IEEE

 
These storage formats can also be represented using hexadecimal notation: 
               C3h 64h C0h 00h  Non-Standard 
               C2h 49h 80h 00h  ANSI/IEEE 
where each group of two hex digits represents one byte.   
We now turn our attention to the properties of these stored numbers, and 
how those properties make round off error a virtual certainty in almost all 
computations.  
 
9.6.5. Properties of Floating-Point Numbers [FMM], [M&H78] 

Everyone is familiar with the fact that 'real numbers' form an infinite 
continuum, that is, they are both continuous, and infinite in extent. Unlike 
the real number system, however, the range of numbers that a computer can 
store (that is, computer numbers as distinct from real numbers) is neither 
infinite nor continuous. In fact, the totality of floating-point numbers 
available to a computer is a function of its design, and can be computed 
exactly from the following relationship: 

 
             ( ) −= − − + +max min max min

p 1F(B,p,E ,E ) [2 B 1 B (E E 1)] 1  .       (9.10) 

 
B is the number base, p the number of bits available for storage of the 
mantissa, exclusive of sign, and Emax and Emin are the largest and smallest 
values of the exponent e, that is, Emin ≤ e ≤Emax . 

 
Justification of Equation (9.10) 

Assuming Non-Standard normalization, then, if we have p bits 
available to store the normalized mantissa, it follows that the first digit can 
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be any one of B-1 possibilities (e.g., 1 in binary or 1,2,..,9 in radix 10). This 
leaves p – 1 bits, each of which can take on B values (e.g., 0,1 in binary or 
0,1,2,..,9 in radix 10). However the number of permutations of B numbers 
taken p-1 at a time is exactly Bp-1 so the total number of possible 
combinations of mantissa digits is 2(B-1)Bp-1, where the 2 accounts for both 
positive and negative values. Note that as yet, 0 has not been included since 
the leading digit is non-zero as required by Non-Standard normalization. 

Now the number of integer values the exponent e can have is just the 
“exponent range +1”, that is: Emax-Emin +1. Since each of the mantissa 
values, is multiplied by each value of the exponent, we finally have Eq 
(9.10), after adding 1 to account for 0. 

Taking B=2, and assuming Eq. (9.9) represents the exponent range,  
Eq (9.10) reduces to the simple expression: 

 
− − + − − = + 
1 1t t p tF 2,p,2 1, 2 2 1 .  (9.11) 

 
Since the number of bits available to store a floating-point number is 

just p+t+1, we conclude that the range of floating-point numbers is 
dependent only on this sum, and not on how the available bits are 
partitioned between the exponent and the mantissa.  

 
To illustrate the distinction between real numbers and computer 

numbers, we will calculate the set of computer numbers available in a 
hypothetical computer whose storage format consists of a three bit mantissa, 
(p = 3), and a 2 bit exponent (t = 2). For simplicity, the sign will be 
designated as ±  instead of a binary digit.  From Eq (9.11), we find that our 
computer can represent exactly 33 real numbers, that is, there are exactly 33 
computer numbers available in this computer to represent the entire infinite 
range of real numbers. Table 9.5 lists this set.        
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      Table  (9.5)  Computer Numbers in the Set F(2, 3, 1, -2)        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 9.5 also exhibits a number of interesting and important 

features of the floating-point number system.       
 
a)  Density of Numbers  

We observe that the difference between numbers of like exponent is 
constant, i.e., 0.03125 for 2-2, 0.0625 for 2-1, 0.125 for 20 and 0.25 for 21, 
and in addition, each factor of 2 increase in the exponent also doubles the 
separation between these numbers. Thus, as we move away from the origin, 
floating-point numbers become increasingly sparse.  This is in direct 
contrast with the behavior of the integers which map with uniform spacing.  
This increase in sparseness implies that the larger the real number to be 
stored, the lower the probability of an exact match with an existing 

MANTISSA     EXPONENT      COMPUTER NUMBER      
    .000                            0                      02 = 010         
   
± .100                          -2                      ±.001002  =  ±0.12500      
± .101                          -2                      ±.001012  =  ±0.15625 
± .110                          -2                      ±.001102  =  ±0.18750 
± .111                          -2                      ±.001112  =  ±0.21875 
   
± .100                          -1                      ±.01002  =  ±0.2500         
± .101                          -1                      ±.01012  =  ±0.3125    
± .110                          -1                      ±.01102 =  ±0.3750 
± .111                          -1                      ±.01112  =  ±0.4375 
   
± .100                            0                      ±.1002  =  ±0.5000         
± .101                            0                      ±.1012  =  ±0.6250 
± .110                            0                      ±.1102  =  ±0.7500 
± .111                            0                      ±.1112  =  ±0.8750 
   
± .100                            1                      ±1.002  =  ±1.000          
± .101                            1                      ±1.012  =  ±1.250                    
± .110                            1                      ±1.102  =  ±1.500 
± .111                            1                      ±1.112 

 =  ±1.750 
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computer number. Figure 9.3 illustrates this behavior for a portion of  F(2, 
3, 1, -2).  The line to the left of ‘0’ is identical to the positive line, only 
negative. 

- . 2 5  - . 1 2 5 0 . 5 1. 1 2 5 . 2 5 1 . 7 5

              
Figure ( 9.3)   Plot of a Portion of the Set F(2,3,1,-2) 

 
We see that our hypothetical computer is very limited indeed.  Even 

in a computer with 32 or more bits dedicated to floating-point storage, the 
set of possible computer numbers is minuscule relative to the set of real 
numbers.  For example, assuming 64 bit storage, we calculate from  
Eq (9.11) that a computer has approximately 10

19
 computer numbers 

available. Clearly an improvement, but hardly the infinite set needed to 
represent the real numbers. 
   

The next question is, what happens when we try to store a real 
number that does not coincide with one of the allowable set of 33 belonging 
to F(2, 3, 1, -2)?  This question has several answers, which, taken 
collectively, constitute the cause of rounding error. 
 
b) Underflow 

From Fig 9.3, we note that there exists a considerable gap between 0 
and the first computer number 2-3. Any real number that falls in this 
underflow gap will be automatically set equal to 0.*

                                                           
*  An alternative procedure supported by the ANSI/IEEE Standard, and called “gradual 
underflow”, consists of uniformly filling the underflow gap with numbers whose absolute 
spacing is identical to that between Xmin and 2*Xmin.  Table 9.6 compares the least non-zero 
number for a PC, with and without a math co-processor, using double precision storage.  

 Usually this 

Table (9.6)  Least Non-Zero Number in Different Implementations 
No Coprocessor – compiler dependent result 5.56 x10-309 
Coprocessor present, gradual underflow not implemented by compiler 2.22 x10-308 
Coprocessor present, gradual underflow is implemented 4.94 x10-324 
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approximation does not terminate execution, or even evoke a warning, 
although the process can be potentially serious because of the automatic 
elimination of all significant digits. 

It should be noted that this underflow gap exists because of our use 
of a normalized mantissa (irrespective of the method of normalization) 
which automatically defines a first non-zero number, Xmin (0.125 in our 
example). The origin of this gap will make more sense if we calculate its 
value theoretically. To keep the notation simple, we will, without loss of 
generality, base the argument on Non-Standard normalization. 

 
c)  Calculation of the First Non-Zero Number 

From Eq. (9.7), it follows that the first positive number greater than 
zero is:  

 
                                              Xmin = fmin 2

Emin 

 

where fmin is the smallest non-zero mantissa and Emin is the smallest 
possible value of the exponent e.  According to Non-Standard 
normalization, fmin must be  
 
                                                 fmin = (.1000··)2 = (2-1)10   
 
               Since Eq (9.11) was derived using the exponent range given by Eq 
(9.9), we must take Emin = -2

t-1
 , in which case: 

            ( )−−
=

t 1
-1

min

2
X 2 2                        (9.12) 

Since t = 2 for our hypothetical computer, we have:  
 

Xmin = 2-1×2-2 = 0.125 
 
 in agreement with our result in Table 9.5. 
 
d) Overflow  

At the other end of the scale, real numbers that exceed our largest 
computer number of 1.75 will not be stored. However, unlike underflow, an 
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error will probably be raised resulting in program termination accompanied 
by an overflow warning.  

Like the least number, the computer's largest number can also be 
computed theoretically and it is instructive to do so. 
 
e)  Calculation of a Computer’s Largest Number 

In this case 
 Xmax = fmax 2 Emax  

 
Now fmax is maximum when all p mantissa bits are set to 1, so 

−

=
= =∑ i

max 2

p

i 1
f 2 (.1111....)  

But  ip

i 1 2−

=∑  is just a geometric progression whose sum is 1-2-p, so:  

              fmax =  1-2-p 

 
Again using Eq. (9.9), we have:  Emax = (2t-1)-1, or: 
 

                                        
−− −= − t 1p (2 1)

maxx (1 2 )2                    (9.13)       
 

Finally, for our hypothetical computer, where p=3 and t=2, we 
calculate that xmax = 1.7510 ,  which again confirms our previous 
calculations. 

 
Eqs (9.12) and (9.13) give the smallest and largest positive computer 

numbers belonging to the set F(2, 3, 1, -2). These same conclusions apply to 
negative values of F(2, 3, 1, -2). 
 
9.7. ROUNDING, CHOPPING, AND THEIR ERROR BOUNDS 
[Ov01],  [Go91], [Ja62] 

As sources of computer error, underflow and overflow are relatively 
unimportant since the frequency of their occurrence is usually rare. Of far 
greater importance is the question of how real numbers that do not cause 
underflow or overflow are represented, that is, real numbers that fall within 
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the computer’s minimum and maximum range, but do not exactly match any 
of the allowable set of computer numbers. [Ja62], [Go91] 

 
The solution is for the computer to force a fit by either rounding or 

chopping the real number to match the closest computer number.  This 
mapping of the real number to its closest computer equivalent is the origin 
of what is usually meant by the term “round off error”, and is a natural 
consequence of limited computer memory.  Indeed, it is the point of this 
chapter.  We define rounding and chopping as follows: 
 
9.7.1.  Chopping 

Chopping is an accurate description of exactly what one does to 
reduce a number to one with fewer digits - you simply delete or chop all 
unwanted digits.  Put another way, chopping is just rounding towards zero, 
which means that a chopped positive number decreases in magnitude, and a 
chopped negative number, increases. 

 
  In our hypothetical computer, where p = 3 - see Table (9.5) - the real 
number 0.3749 would be mapped to 0.3125 with an error of 17%, i.e., 
                                                                chop       
                        0.374910 = .10112··· x 2-1   .101 x 2-1  0.312510 
9.7.2. Rounding 

Rounding a number to p mantissa bits involves the procedure in 
which the computer retains p+1 bits, adds 1 to the (p+1)th  bit*

 

 and then 
chops to p bits.  This is equivalent to the familiar process in base 10 of 
adding 5 to the number following the rounding digit, and then chopping.  
Rounding is done after normalization in order to preserve accuracy. 

Rounding in our hypothetical computer would map 0.3749 to 0.3750 
with an error of less than 1%, i.e. +.0001:   

                                        chop 
                    .374910 = .10112 x 2-1 .1100 x 2-1  .110 x 2-1  0.375010 

 

                                                           
* More generally, for an arbitrary base B, add B/2 B-(p+1) Be 
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             Rounding, while considerably more accurate than chopping, has a 
significantly greater computational overhead. For that reason, and because 
for many applications the distinction is relatively unimportant, chopping is 
not uncommon.  However, any computer that supports the ANSI/IEEE 
standard will use rounding. 

We conclude this section by reiterating that round off error will 
occur whenever a real number does not belong to the set F(B, p, Emax, Emin), 
and must therefore be rounded or chopped to agree with its closest computer 
approximation.  It is also important to realize that even if two real numbers 
happen to map exactly it is unlikely that there sum, product etc. will.  For 
example, the sum of the two numbers,  .101 x 21 and  .100 x 2-2, both of 
which belong to our set of 33 listed in Table 9.5, is .1011 x 21 (=1.37510) 
and which is not a member of the set.   

Since round off error is a virtual certainty for almost any digital 
computation, the issue is not how to avoid it, but rather, how to live with it.  
Our first step, to that end, is to establish a quantitative measure of its impact. 

 
9.7.3.  Error Bounds  

We have already seen that a base 2 floating-point number x can be 
written in the normal form:                         

FL(x) = f*2
e                        (9.14)   

where we use FL(x) to represent the computer number equivalent of the real 
number x. Thus FL(x) belongs to the set F(B, p, Emax, Emin) while x may or 
may not. In a loose sense, we will view FL as a kind of operator whose 
function it is to map a real number x into the set F(B, p, Emax, Emin) through 
the aegis of chopping or rounding. 

In order to estimate the error associated with this mapping process, 
we first calculate the separation between two arbitrary nearest-neighbor 
computer numbers.  Then, assuming that the real number x falls between 
these two computer numbers, we calculate the error incurred when we chop 
or round x to force agreement with one of them.  

Taking the mantissa to be exactly .100…, assuming normalization, 
we can, without loss of generality, define the smallest floating-point 
numbers greater than 0 to be  
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    FL(xi) = 2-1 × 2e  
 

Then, assuming p mantissa bits, the value of the next largest 
mantissa must be a set pth bit or 2-p. This number, when multiplied by 2e and 
added to FL(xi), will generate the next larger computer number  FL(xi+1),  

 
   FL(xi+1) = (2

-1 + 2-p) 2e . 
 

The gap between these two successive computer numbers is then the 
difference:     

   δ  = FL(xi+1) - FL(xi) = 2e-p         (9.15) 
 

Consider now a positive real number x that falls between FL(xi) and 
FL(xi+1), i.e.:       

                            FL(xi)≤  x ≤FL(xi+1)  
 
The following diagram illustrates how these numbers are related. 
 
 Figure  (9.4)  Relationship between x and FL(x)   

 
 
If we assume that x will be approximated by the closest computer  

number, then rounding will set x equal to FL(xi+1) for x to the right of the 
midpoint, and FL(xi) if chopping is used. Figure 9.4 also establishes the 
following relationship between the absolute error bound and the gap size, 

                             
δ

δ
= − ≤





chopping
AE x FL(x)

2 rounding
 .  (9.16) 

Thus the difference between x and its floating-point equivalent, 
FL(x) will be bounded by the full gap if chopping is used, and by half of the 
gap size for rounding. Since one might expect that on average, real numbers 



Computer Rounding Errors  33 

falling within the gapδ would be evenly distributed, one will appreciate just 
how pessimistic the chopping bound can be. 

We next establish the relationship between the gap size, the machine 
precision p, and x itself. To do this we specify how the mapping is achieved. 
 
9.7.4. Rounding Error Bound 

From Eq (9.15), it follows that 
 

δ /2 = 1/2 * 2e-p = 2-p 
* 2e-1  

 
or, using Eq (9.16) and the fact that FL(xi) = 2e-1  gives  
 

              |x-FL(x) | ≤  2-p * 2e-1    . 
 

In addition, since x is assumed to fall between FL(xi ) and FL(xi+1), 
then the least bound for arbitrary x is, from Fig 9.4, 

 
   FL(xi)≤ |x| 
 

from which we can we conclude that the absolute error bound for x is:   
 

AE = |x-FL(x)| £ |x| 2
-p

                                        (9.17) 
 

Equation (9.17) says that the absolute error with which x is stored is 
a function of the magnitude of the x itself and the machine precision.   

In contrast, the relative error, which follows from Eq (9.2), is: 

                                    ≤ -px-FL(x)
RE=  2

x
  

and which is seen to depend on the machine precision but not on x itself.  
 
9.7.5. Chopping Error Bounds  
Since, according to Eq. (9.16), the error associated with chopping and 
rounding differ by a factor of 2, it follows that the absolute chopping error is 
given by: 
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 |x-FL(x)| ≤  |x| 21-p  
 

By denoting u as the 'unit round off error', these results can be 
summarized in Table 9.7.  

                                  
                            Table  (9.7)  Error Bounds *

 
  

 
            

  
   
 

 
where we have obviously defined 2 pε −= . We have yet to discuss how p is 
evaluated. 

From Table 9.7, we see that the absolute error AE is proportional to 
the magnitude of x itself. This is consistent with our statement that computer 
numbers become sparser as one moves away from 0 - see Figure 9.3. 
Consequently, the larger x, the more unlikely it is that x will exactly map to 
a computer number hereby increasing both the magnitude, and the 
probability of the resulting round off error.  

 
9.7.6. Alternative Derivation of the Round-off Error 

Before leaving this subject, it is instructive to re-derive these error 
bounds in a way that emphasizes the role of the computer's precision.  From 
Equations (9.4) and (9.6), we have for the relative error: 

                              

− −

= =
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* The relations in Table 9.7 do not need modification to accommodate ANSI/IEEE 
normalization provided we define p to be the total number of bits representing the 
significand, including the suppressed bit.  
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The numerator is just the difference between the exact real number 
x, which is expressed to infinite precision, and its floating-point equivalent 
whose precision is determined by the upper limit k.  The value that k takes 
on depends on whether we round or chop i.e., if we chop, k = p, but if we 
round, we add a 1 to the (p+1)th  digit so that k = p+1.   

 
If we assume chopping, then on combining sums, the numerator may 

be written:  

     ( )− + − + −
+ +

=
+

∞
+ + = ∑p 1 (p 2) i -p

p 1 p 2
i 1

p ia 2 a 2 a 2 2  

                 ( )− + − + −
+ +
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+

∞
+ + = ∑p 1 (p 2) i -p

p 1 p 2
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p ia 2 a 2 a 2 2  , or: 
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i
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p
p ia 2

x-FL(x)
2

x
a 2

 . 

 
Now the numerator has an upper bound of 1 while the denominator 

has a least bound of 1/2 (or 2 and 1 respectively for ANSI/IEEE 
normalization).  Substitution of these bounds leads to our previous result for 
chopping, namely: 

  −≡ ≤ 1 Px-FL(x)
RE 2

x
  

The error for rounding is then half of this value.    
  

9.8 MACHINE EPSILON/UNIT ROUNDING ERROR 
By now it should be obvious that the accuracy with which floating-

point numbers can be represented will depend in general on the number of 
mantissa bits p, and in particular, on the value of the least significant bit. 
The value of this least significant bit is called the machine epsilon, and is 
defined as: 
                                   Machine Epsilon ≡ ε = 2-p         (9.18)  
 



                                   COMPUTATIONAL PHYSICS LABORATORY GUIDE 
 
36 

Machine epsilon, which is a computer or compiler dependent 
quantity, can be interpreted as the smallest floating-point number that can be 
added to 1, stored, and then recalled from memory with a result 
distinguishable from 1. Alternatively, ε  is the smallest number for which  
1+ε  > 1.  We anticipated the definition of ε  in Table 9.7, when we 
expressed the unit round off error u, in terms of this quantity. From  
Eq (9.18) we see that it is a simple matter to calculate the value of ε  if we 
know p.   

For example, according to Table 9.4, p equals either 24 or 53, so,  
 

                          ε
− −

−

 ≈= 
≈

24 8

53 -16

2 6.0 x 10   SINGLE PRECISION  

2 1.1  x  10 DOUBLE PRECISION
 

 
Thus, in ANSI/IEEE double precision, any number less than 

approximately 1.1 x 10
-16 like, 1.0 x 10-16, will act like zero when added to 

1.  For a computer using Non-Standard normalization we would have 
ε = 2-52 ≈  2.2 x 10-16. 

 
If p is unknown for a particular machine, it can be estimated 

'experimentally' to within about 1% with the following code fragment. 
  
              Code Fragment (9.2) Machine Epsilon 
 

 
 
 
 
 
 
 
 

 
Another approach to measuring p is the following algorithm which 

measures the least significant bit directly (see Code Fragment 9.3). 
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As j advances towards the maximum number of mantissa bits, the 
magnitude of SUM also increases towards 1. The last value of J just before 
the SUM abruptly changes to 1 exactly is the maximum number of mantissa 
bits p.  Epsilon then follows from Eq (9.18).  These two programs should 
give very similar results.  

 
                         Code Fragment (9.3)   Least Significant Bit  
 
 
 
 
 
 
 

 
 
Typically, Code Fragment 9.2 gave an ε  = 1.12 x 10-16, and Code 

Fragment 9.3 gave p = 53, which is consistent for double precision. 
Epsilon is an important machine parameter for estimating rounding 

errors as well as a frequently used stopping criterion in conjunction with 
relational operators. For this reason, programs often contain a short 
subroutine to measure ε , especially if they are to be ported from one 
computer to another. 

We are finally in a position to use the equations in Table 9.7 to 
compute the error associated with the storage of a real number in computer 
memory, that is, the error which results from forcing a real number to agree 
with its closest computer number equivalent.  

 
EXAMPLE (9.6) 

In Example 9.1, the 20 digit number x = 12345678901234567890 
was stored using ANSI/IEEE double precision, for which ε ≈1.1x10-16, and 
then printed out, producing 12345678901234569000 - an absolute error of 
about 1.1 x 103.  Using the expressions in Table 9.7, the predicted absolute 
error bound is X*ε ≈1.4 x 103 which is consistent with X*ε  being an upper 
bound.    
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This example illustrates the mechanics of predicting the rounding 
error associated with the storage of a single real number in computer 
memory. This result, while interesting, is of limited value unless we are able 
to expand the concept to include complex arithmetic operations. How this is 
done is the subject of Chapter 10. 
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