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10. COMPUTER ROUNDING ERRORS: APPLICATIONS 

In chapter 9 we saw how limited memory lead inevitability to rounding 
errors whenever real numbers are stored. That analysis also resulted in our 
establishing a bound for the absolute and relative errors incurred as a result 
of that storage. In this chapter we look at how those simple relationships 
used to store a single number can be used to estimate the error associated 
with complex computations involving multiple operations. We begin by 
looking at how ‘computer arithmetic’ differs from what we might expect. 
 
10.1. COMPUTER ARITHMETIC [Jac62], [San91], [Kor93] 

Computer round off error coupled with the use of normalized 
numbers can lead to some interesting variances with the rules of ordinary 
arithmetic. We distinguish between integer and floating-point computations. 
 
10.1.1 Integer Arithmetic 

As we have seen, integers, provided they do not exceed the 
computer's word size, are stored without error. Furthermore, integer 
arithmetic is exact if the result is also an integer. Fractional parts are 
removed by chopping so that the usual arithmetic rule: (a+b)/c = a/c + b/c 
does not hold. Integer arithmetic has the advantage in that it requires far 
fewer operations to perform and is therefore much faster than floating-point 
arithmetic. It is obviously of limited value for general computation.  
 
10.1.2. Floating Point Arithmetic [Ove01], [Gol91] 

We will assume that floating-point arithmetic is done exactly, and 
that the only source of error is in the storage of the result.  This assumption 
has already been justified for coprocessor arithmetic on the basis of the 
relative precision of the computed (80 bits) and stored result (64 bits). 
Without a coprocessor however, arithmetic is software dependent so that the 
assumption of exact arithmetic is no longer valid.  Example 10.1 will 
demonstrate this difference.   
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            We now briefly examine how round off error can influence the 
accuracy of certain arithmetic operations. 
 
10.1.3. Addition/Subtraction 

Addition and subtraction operation are especially susceptible to a 
potential loss of significant digits due to the requirement that exponents 
must match before aligning radix points.  

 
To see this, suppose we wish to add the two real numbers,  

x = 8521.97 and y = 1.09977, using a base 10 computer with a 4-bit 
normalized mantissa, i.e., p=4 and chopped arithmetic. The procedure for 
addition (and subtraction) implements the following steps:   

                    
1.  Normalize both numbers:   

       x = 0.852197 x 104 ;     y = 0.109977 x 101 

2.  Chop the mantissas to 4 digits: 

      fx = 0.852197 __> 0.8521;  fy = 0.109977 __> 0.1099 
3.  Adjust the exponent of the smaller number (y) to match the 
exponent of the larger number (x) with the rule: '

( )y xe e
yy

f f B −= , 

where y' is the adjusted mantissa. For B = 10, we have, ' 4xy
e e= = , 

'
(1 4)0.1099 10 0.0001099

y
f −= × = . 

4.  Add:  x + y = 0.8521 x 104 + 0.0001099 x 104 = 0.8522099 x 104
 

5.  Chop to 4 digits: x + y = 0.8522 x 104
 

             6.  Re-normalize if necessary. 
 

We observe that if ex – ey ≥  p then y will be too small to contribute 
to the sum in which case x + y →  x. In this example, if ey had been 0 
instead of 1, y would have made no contribution at all to the sum.  As it is, 
we see from a comparison of the result with the exact sum, 8523.06977, that 
normalization coupled with the necessity for matched exponents has led to 
an absolute error of 1.06977 corresponding to a loss of most of the 
contribution from y. 
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This example illustrates how the larger number dictates the radix 
shift in a smaller number prior to addition or subtraction with the 
consequence that the smaller number may be shifted to oblivion. 
 
10.1.4. Multiplication/Division 

In multiplication and division, exponents are added or subtracted and 
mantissas are multiplied or divided.  In neither case is an exponent match 
required before aligning the radix so these operations are inherently less 
susceptible to significant digit loss. 

 
10.1.5. Failure of Arithmetic Rules 

Given how limited precision can affect the accuracy with which 
floating-point numbers are stored, it will come as no surprise that the usual 
rules of algebra, like the associative and distributive laws, which hold for 
real numbers, can sometimes fail for computer numbers. 

 
10.1.6. Error Bounds on Extended Floating-Point Arithmetic 

We have just seen how limited precision can lead to limited accuracy 
in the storage of a single real number.  Assuming rounded arithmetic, we 
now extend our analysis to include compound operations.  

From Table 9.7, we know that the relative round off error is bounded 
by u, that is: 

                                         
−

≤
x FL(x)

u
x

         (10.1) 

 
               We now define the quantityδ , with the relationship:  

( )δ
−

=
FL x x

x
 

 where δ  may be positive, negative or zero*

δ

, and is obviously the actual 
relative error, sans absolute value signs, of representing x by FL(x). In 
general, we do not know the value of , but we can establish its bound by 
taking absolute values of both sides of the previous expression, and then 

                                                           
* For chopped arithmetic, δ £ 0. 
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comparing the result to Eq. (10.1), to establish that | | uδ ≤ , that is δ  is 
bounded by u. From the definition of δ , we have: 
 
      FL(x) = x(1+δ )         (10.2)  
 
which says that the computer number representation of x can be viewed as 
the value of x plus a perturbation term, xδ , where |δ | is bounded by u. If 
one rearranges Eq (10.2) to read, RE=|δ |, it is easy to appreciate just how 
conservative the use of the bound | | uδ ≤ = 2-p is, since, as we have said, 
δ can be either sign or even zero.  

Equation (10.2) is limited to computing FL(x) for the storage of a 
single real number x. However, if we make a couple of reasonable 
assumptions, we can extend its use to include the situation in which x is the 
result of one of the basic arithmetic operations, +, -, * and ÷  between any 
two computer numbers y and z. This in turn allows us to analyze complex 
computations as a sequential series of these individual operations. These 
assumptions include:   

 
• Computer arithmetic is exact. This assumption has already been 

justified since the arithmetic registers are 80 bits wide, so the only 
error, apart from underflow or overflow, is storing the computed 
result using 64 bits. 

 
• The numbers y and z are computer numbers and thus belong to                                        

F(B, p, Emax, Emin) 
  
Actually, apart from the round off error incurred with the initial 

input, all numbers called from memory prior to any arithmetic operation 
must belong to F(B, p, Emax, Emin). The error associated with the initial input 
should become increasingly less important the more complex the 
computation. 

 
In the context of these assumptions, if we view x in Eq (10.2) as the 

numerical result of one of the four basic arithmetic operations, +, -, *, ÷ , 
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which we represent by the symbol '', between two computer numbers, y 

and z, we can write, 
                                               FL(yz) = (yz)(1+δ ) ,                  (10.3) 

where y and z are assumed to belong to F(B, p, Emax, Emin), but the result of 
the operation, yz, may not. Note however, that while yz may not be 

belong to F(B, p, Emax, Emin), FL(yz) will. 

 
The four basic arithmetic operations then become:                         

 
          Table 10.1. Basic Arithmetic Operations 

FL(y*z) = (y*z)(1+δ )        
FL(y/z) = (y/z)(1+δ )  
FL(y+z) = (y+z)(1+δ )  
FL(y-z) = (y-z)(1+δ ) 

 
where each of these expressions refer to a single arithmetic operation 
between two computer numbers. 
 
COMMENT 

The relationships in Table 10.1 apply to the computer representation 
of yz assuming that y and z are computer numbers, but the result of the 

‘’ operation may not be. But if y and z are not computer numbers to begin 

with, then the result of the operation yz is not Eq (10.3), but is, instead:  

 
FL(yz) = FL[FL(y)  FL(z)], for the initial storage of y and z  

  = FL[y(1+δ 1)  z(1+δ 2)],           using Eq (10.2) 

              = [y(1+δ 1)  z(1+δ 2)](1+δ 3)     using Eq (10.3);   

and where again, the δ 's are bounded by u.   
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The absolute error bound in the former case where y and z are 
computer numbers and where Eq (10.3) applies, is: AE ≤  |yz| u, whereas 

in the case where y and z are not computer numbers, the bound depends on  
the specific operation .   

For example, if  represents multiplication, we have, ignoring all 

non-linear terms in u:  
                       AE ≤  |y*z| u , if: y,z Î  F(b, p, Emax, Emin) 

                                   AE ≤  |y*z|3u , if: y,z Ï  F(b, p, Emax, Emin)  
  
which can be a significant difference.   
  
10.2. PROPAGATION OF FLOATING-POINT ERROR [Mor83], 

[K&C02], [For70], [M&H78], [FMM77]         
We now apply these relations to a more complex calculation 

consisting of a sequence of operations. It is important to stress that the order 
in which “FL” is applied must be the same as the order in which the 
computer does its arithmetic.   

We will assume, as is typically the case that computation proceeds 
left to right, quantities in brackets first, multiplication and division before 
addition and subtraction etc. Exponentiation is not included since it is not an 
elementary arithmetic operation.   
 
10.2.1. Addition/Subtraction 

Consider the simple sum x1+x2+x3 where it is assumed that x1, x2 
and x3 are machine numbers, i.e. they have been stored and recalled from 
memory. The order of operation will be from left to right, that is: 
(x1+ x2) + x3. Applying the addition rule from Table 10.1, we have:     

 
            1 2 3 1 2 3( ) (( ) )FL x x x FL x x x+ + = + +  

                                       1 2 3( ( ) )FL FL x x x= + +            inner ( ) first 

                                       1 2 1 3{( )(1 ) }FL x x xδ= + + +      using Table 10.1 once  

                                       1 2 1 3 2{( )(1 ) }(1 )x x xδ δ= + + + +    and again, to give, 
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                                        1 2 3 1 2 1 2 1 2 3 2( ) ( )( )x x x x x xδ δ δ δ δ= + + + + + + +  . 
 
The absolute error is then: 

      

[ ]1 2 1AE δ δ δ δ δ= + + − + + = + + + +1 2 3 1 2 3 1 2 2 3 2(x x x ) FL(x x x ) (x x ) x   

                 1δ δ δ δ δ≤ + + + +1 2 1 2 2 3 2x x x       using the triangle inequality*

                 

  

1δ δ δ δ δ≤ +  + +  + 1 2 1 2 2 3 2x x x       and again, and then 

                 ( )≤ + + +2
1 2 3x x 2u u x u  replacing δ  by its bound, i.e., | | uδ ≤  

 
We now drop u2, since u2 << u, apply the triangle inequality again to 

the |x1+x2| term, add and subtract the quantity |x3|u, and rearrange the result 
to read: 
 
                                      ( )≤ + + −1 2 3 3AE x x x 2u x u  

                                             ( )≤ + +1 2 3x x x 2u   
and the relative error:     

                                      
( )+ +

≤
+ +

1 2 3

1 2 3

x x x 2u
RE

x x x

                              
(10.4)

 

  
Clearly a lot of work for such a simple problem. We now apply Eq (10.4) to 
addition and subtraction. For the case in which x1,x2 and x3 are all positive, 
the ratio of absolute values cancel (using the triangle inequality again) in  
Eq (10.4), with the conclusion that the relative error is bounded by 2u.   

Of greater interest however, is what happens if one of the three 
numbers, say x3, happens to be negative, and also happens to be of 
approximately the same magnitude as the sum of the other two, i.e., 
|x3| ≈ x1+x2. In this case, the ratio of the numerator to the denominator in  
Eq(10.4), and therefore the relative error, can be very large, in fact, virtually 
unbounded. This effect is often called catastrophic or subtractive 
cancellation, and should be avoided at all costs, because even a single 
                                                           
*  The triangle inequality reads, |x+y|≤ |x|+|y|  
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instance can severely compromise the accuracy of an otherwise well 
designed calculation.  We will return to this topic when we discuss error 
reduction strategies.    
 
10.2.2. Multiplication/Division 

Using an analysis similar to our previous one, the reader may wish to 
show that the relative error bound for both of the compound 
operations, 1 2 3x x x  and 1 2 3/x x x  is given by RE ≤  2u.   

Before leaving this topic, we will analyze one additional compound 
procedure that illustrates just how unwieldy this method of analysis can be. 
 
EXAMPLE 10.1. Round off in Extended Addition and the Value of the 
Coprocessor [McC02] 

While ε  is the smallest number that can be added to 1, which results 
in a sum differing from 1, it is not the smallest number that can be added to 
0, to produce a result different from 0. That number is Xmin (Eq 9.12), and 
represents the first positive (or negative) computer number greater than 0. 
The interval between 0 and Xmin is just the underflow gap.  

 
To illustrate this point, we add the number 1 x 10-16, which is less 

than ε  (= 2-53) to 0, one million times, and which, assuming no round off 
error, ought to total to 1 x 10-10 exactly.   

We do this computation in ANSI/IEEE double precision with, and 
without, a math coprocessor.  The result is not exactly 1 x 10-10, but is 
instead: 
                         1.00000000026118000 x 10-10  (no coprocessor) 
                         1.00000000002310420 x 10-10  (coprocessor) 
where all of the non-zero digits after the 1 correspond to the total 
accumulated round off error. 

Note that the coprocessor, which implements the IEEE/ANSI 
Standard, reduces the accumulated error by more than an order of 
magnitude. 

To estimate the theoretical error bound, we begin by writing the 
summation as the sequential process: 
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                         ( )( )( )
=

= ⋅⋅⋅ + + + ⋅⋅⋅ +∑
n

i 1 2 3 n
i 1

x x x x x  . 

Our goal is to compute the machine representation of this sum, 
namely: 

                 ( )( )( )
=

= ⋅⋅⋅ + + + ⋅⋅⋅ +∑
n

i 1 2 3 n
i 1

FL x FL FL FL x x x x   

( )( ) ( ) ( )( ) ( ) ( )2δ δ δ δ δ δ δ= + + + ⋅⋅+ + + + + + ⋅⋅ + + + ⋅⋅ + +      1 1 n 2 2 3 n n nx 1 1 1 x 1 1 1 x 1  

                     δ δ δ
= =

+ + + + ⋅⋅⋅+ +∏ ∏1 j 2 j
j 1 j 2

n n

n n= x (1 ) x (1 ) x (1 )       (10.5) 

where δ ≡ 0 has been introduced for notational convenience. 

Because the jδ  are all bounded by the unit round off error: | jδ |≤u, it 

follows that (the validity of this expression follows by inspection): 

                                           ( ) ( )δ
=

≤ +∏ j
j 1

k
k

1+ 1 u  . 

Term by term substitution into Eq (10.5) gives: 

                       ( ) ( ) ( )2
1

=

−≤ + + + + ⋅⋅⋅ + +∑ i 1
i 1

n n n
nFL x x 1 u x 1 u x 1 u   

                                      ( ) ( )
=

− +

=
= + ≈ + − +  ∑ ∑i i

i 1

nn n i 1

i 1
x 1 u x 1 n i 1 u  

where the last line follows from the binomial series*

This last expression can then be expanded to read: 
.  

                      
= = = = =

 ≤ + − +  
∑ ∑ ∑ ∑ ∑i i i i i
i 1 i 1 i 1 i 1 i 1

n n n n n
FL x x n x ix x u     

Now all of the xi are the same in the example we are analyzing 
which leads to the following simplifications, 

                                                           

* 2( 1) ( 1) ( 1)(1 ) 1 1 0 1
2! !

m nm m m m m nx mx x x mx for x
n

− − ⋅⋅⋅ − +
+ = + + + ⋅⋅⋅+ + ⋅⋅⋅ ≈ + < <<  

Strictly speaking, we should take into account the fact that, while powers of u are 
very small relative to u itself, the coefficients in the binomial expansion will become very 
large. To account for the contribution of these higher order terms, one can show that 
(1+x)m is bounded by 1+kmx, i.e., (1+ x)m ≤ 1+ kmx, where k is a number slightly greater 
than 1, typically 1.01-1.06.  For our purposes here, this factor can be ignored.   
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=

=∑ i
1

n

i
x nx   

        ( )
= =

+ 
= =  

 
∑ ∑i

1 1

n n

i i

n n 1
ix x i x

2
 . 

  We then have, after substitution of these expressions:       

( )
=

 ≤ + − + + ≅ + >>  
∑

2
2 2 2

i

n

i 1

x n xu
x nx n x n n nx u nx       for n nFL

2 2
,       (10.6)                              

so our final bound on the absolute error reads:  

  
=

= − ≤∑
2

i
i 1

n n xu
AE nx FL x

2
. 

Taking u =ε , we calculate a bound of 1/2 * (106)2 * 10-16
* 1.1 x 10-16  =  

0.55 x 10-20. This may be compared with an actual error of 0.23 x 10-20 for 
the coprocessor case. Note however that the bound underestimates the error 
if a coprocessor is not present, a fact, fortunately, that is of historical interest 
only. This emphasizes the point made earlier that the accuracy of floating-
point arithmetic done on a PC without a math coprocessor is software 
dependent with the result that the assumption we made in constructing  
Table (10.1), namely that all floating-point arithmetic is done exactly, is 
invalid. 

One final example illustrates the importance of the math coprocessor 
in reducing both the computation time and round off error.  
 

The following code fragment, which makes liberal use of 
transcendental functions, was run in double precision, with, and without a 
math coprocessor.                

 
              Code Fragment (10.1) Coprocessor Test 

 
 
 

 
 
 

Sum = 0 
For n = 1 to 10000 
   x = (Tan(Atn(Exp(Log(Sqr(n*n))))))/n 
   Sum = Sum + x 
Next n 
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Assuming no arithmetic or round off error, the value of x would be 
exactly 1 for each value of N so the final value of SUM should be 10000 
exactly. The results are listed in Table (10.2). 
            The difference between the two results is partly due to the fact that 
the coprocessor, with its extended precision registers does its basic 
arithmetic operations more accurately, but even more important is the fact 
that the transcendental library functions built into the coprocessor results in 
much greater accuracy and speed. 
 
          Table (10.2) Effect of a Math Coprocessor on Speed and Accuracy 

 
Incidentally, it is interesting to note that the error value in the sum 

(i.e., Sum -10000), is not necessarily the maximum error because the 
cumulative round off error does not increase uniformly with increasing N. 
Figure (10.1) illustrates this fact. Here we have plotted 10,000 values 
corresponding to the difference (N-SUM)*1013 vs. N (x axis) for the 
coprocessor calculation. If there were neither computation nor round off 
error, this difference would be zero for all values of N.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
                         FIGURE 10.1. Plot of (N-SUM)*1013 vs. N 

COPROC.       REL. TIME(sec.)                       SUM       
  NO                          11.5                                  10000.0000096474000 
  YES                         1.0                                   10000.0000000000130   
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           This pseudo-random walk behavior reflects the fact that the actual 
individual errors δ i can take on any value within the constraints of their 
bound, u.  Establishing a theoretical error bound for the algorithm in Code 
Fragment (10.1) would be difficult at best. 
 
10.3. ERROR REDUCTION STRATEGIES  

As we have just seen that a detailed error analysis of a complex 
computation is itself complicated and time consuming - in fact, prohibitively 
so for most real computations. The need for such an analysis can be reduced 
significantly however by designing algorithms that respect the potential for 
round off error problems before they occur. 
  What follows are a few rules and examples that are worth keeping in 
mind when writing code. Obviously, for programs involving relatively few 
computations, or when computational errors are negligible compared with 
experimental error, these suggestions will be unimportant. Quite the 
opposite may be true for certain kinds of extended computations, especially 
if the problem is already ill conditioned. And obviously, double precision 
floating point math should be a given. 
 
RULE 1: MINIMIZE THE NUMBER OF ARITHMETIC 
OPERATIONS 

This recommendation follows from the observation that, since each 
arithmetic operation can potentially contribute to the total round off error, 
then it makes sense to try and make complex procedures as efficient as 
possible. 
 
EXAMPLE (10.2) Evaluation of a Polynomial 

Suppose you wished to compute the following polynomial for a 
specific value of n and a range of x values: = + + + n

0 1 np(x) a a x a x . 
You could simply code the polynomial as written, but if you care 

about efficiency, and you should, then coding as written is the least efficient 
method possible. A few moments with pencil and paper should convince 
you that the total number of multiplications and additions required are 
n(n+1)/2, and n respectively. 
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Alternatively, Horner's rule, which actually dates back to Isaac 
Newton, rewrites the polynomial in the following form thereby reducing the 
total number of operations to 2n for multiplication and addition combined.   

( )( )( )− −
  
 

= + + + + + +n n 1 n 2 2 1 0p(x) a x a x a x a x a x a   

Another advantage of Horner's rule is that it is actually easier to code 
than the polynomial itself, as the following code fragment shows: 
                           Code Fragment (10.2) Coding a Polynomial 

Poly = a(n) 
FOR i = n-1 TO 0 STEP -1 
     Poly=Poly*x+a(i) 
NEXT i 

 
where the a(i) are the coefficients of the polynomial. 

Historically, Horner's rule was related to the need to facilitate pencil 
and paper calculations, nevertheless it is the usual method for the computer 
evaluation of polynomials of any size. 
 
RULE 2: AVOID ADDING AND SUBTRACTING NUMBERS OF 
DISPARATE MAGNITUDES 

We have already seen how, when two numbers of widely differing 
magnitudes are added or subtracted, there can be a loss of significant figures 
due to the necessity for matching exponents by de-normalizing the smaller 
number.  When faced with multiple additions and subtractions, try to 
arrange the computations to ensure that the numbers are of roughly the same 
magnitude in order to preserve significant digits.  
 
EXAMPLE (10.3) Summation of a Constant 

To illustrate the problem, suppose we were to successively sum the 
number 1.2, 50,000 times, which, without round off error, would result in an 
exact value of 60,000. Using the following loop with single precision, which 
better illustrates the problem, we have:      

   
                                      FOR k=1 TO 50000 
                                             Sum = Sum + 1.2 
                                       NEXT k 
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we obtain instead:  Sum = 59973.49. 
The problem of course, is that as the sum builds, the difference 

between the partial sum, and the number 1.2, causes an increasing loss of 
significant digits. 

The recommended procedure is to partition the sum into smaller 
groups of equal size, which can then be added together. For example, if we 
divide the summation into 10 groups of 5000 summations each, and then 
add the results, we obtain the improvement: Sum = 60001.92. 

Thus when doing extended summation with numbers of 
approximately equal magnitude, use partial sums of about equal magnitude, 
and then add the partial sums.   
 
EXAMPLE (10.4)  Series Summation 

Suppose you had occasion to sum the following series, 

                        
( )

π
=

∞
= + + + =

+
∑

2

2 2 2
n 0

1 1 1
1

3 5 82n 1
  ≈  1.233700... 

Coding the sum using a 'forward summing' loop, from n = 0 to a 
sufficient upper index, gave the single precision result, SUM = 1.233596 . 

The computed value is stable to the last digit stated so disagreement 
between the sum and the correct value is due to round off error, and not 
early truncation of the summation process.   

 
As in the previous example, we are adding increasingly smaller 

numbers to a partial sum that achieved most of its magnitude early in the 
summation process.   The solution to the problem is to 'back sum' the series 
starting with large values of n and working backwards to n = 0. Summing 
from the same upper index as for the “forward sum”, to n = 0, gives SUM = 
1.233698, for a factor of 40 decrease in the relative error. 

 
We may quantify this result by referring to Eq  (10.5) which shows 

that the first term, x1, is multiplied by all n error terms, the next term x2, by 
n-1 error terms and so on until the last term is multiplied by only the single 
error term (1+δ n).  

Now x1 is simply the first term, whether we forward or back sum, 
and since it is multiplied by the largest number of error terms then it usually 
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makes sense to ensure that x1 is the smallest value in the series, namely, the 
first back-summed term. 

 
As a rule then, one should carry out extended summations in the 

direction of increasing magnitude rather than the other way round. It should 
also be pointed out that the need for 'back summing' is dictated by the nature 
of the particular series being summed and the acceptable error. In other 
words, back summation may not be necessary, but the method is straight-
forward if it is.    

 
The next example illustrates an interesting phenomenon, sometimes 

termed “smearing”, where the relative magnitudes of terms in a series can 
really get out of hand. 
 
EXAMPLE 10.5. Alternating Series Summation 

The Taylor series for exp (-x) is given by: 
=

∞
= = + + +∑

n 2
x

n 0

x x x
e 1

n! 1! 2!
  

and is valid for all values of x.   
 
Suppose we use this series to compute a double precision 

approximation to exp(-20) by forward addition of the terms until the 
individual contributions are less than machine epsilon. This computation 
gave the following results, 

   
                                   SERIES SUM ≈ 6.14756 x 10-9, 
                                   CORRECT VALUE = 2.06115... x 10-9 
 

To see what went wrong, we list a selection of the 82 terms that 
contribute to the final sum. We distinguish between the even and odd values 
of the summation index, j, to differentiate between positive and negative 
terms.             
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            Table 10.3. Terms in Expansion of exp(-20)       
 
 
 
 
 
 
 

 
 
 
 
 
 
 
In forward summing the series, we see that xn builds rapidly with 

increasing n. This results in large terms of alternating sign whose sum is still 
large.  Even though the n! in the denominator will eventually take over and 
drive the ratio to zero, nevertheless these large numbers ultimately 
determine the number of significant digits in the final result.   

We can roughly estimate the overall error in the summation by 
assuming the bound is determined by the largest term in the sum.  This 
largest term corresponds to j = 20 where the contribution is 4.3 x 107, so 
roughly: 
                                  Absolute Error ≤ |max term|ε    

                                 = 4.3 x 107 x 1.1 x 10-16                                                                                     
                                 = 4.7 x 10-9    

which compares favorably with an actual absolute error of about 4 x 10-9.  
This so called 'smearing' effect will occur in any situation in which 

the individual terms in the sum are large relative to the value of the sum 
itself. Backward summation makes no sense and actually makes matters 
worse so this technique is not an answer.     
              The standard solution to the problem is to compute [exp(-1)]20. This 
avoids the problem since the series for exp(-1) shows little of the smearing 
behavior that exp(-20) did. Alternatively, one can compute 1/exp(20) 
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because ex is well behaved for positive values of x. These conclusions can 
be confirmed with a simple calculator. 
 
RULE 3: AVOID SUBTRACTING NUMBERS OF NEARLY EQUAL 
MAGNITUDE [For70], [K&C02] 

We have already discussed the fact that the subtraction of two nearly 
equal numbers, termed subtractive cancellation, is a dangerous proposition 
because the relative error can increase without bound.  One obvious solution 
is to use double or extended precision, but there are situations where even 
that remedy cannot save a flawed algorithm. In the following examples we 
place the emphasis on a reformulation of the problem rather than just relying 
on more computing horsepower. 
 
EXAMPLE 10.6. Solution of a Quadratic Equation 

A classic example of subtractive cancellation arises in the solution of 
the quadratic equation: ax2 + bx + c = 0, using the familiar quadratic 
formula 

                                                 − ± −
=

2b b 4ac
x

2a
 . 

If the product 4ac is small relative to b2, then the magnitude of the 
discriminate and b will be nearly the same, that is: 

                                                       − ≈2b 4ac b  . 
In this situation, subtractive cancellation will almost certainly lead to 

a significant error. For example, the coefficients a=1, b=1, and c=10-6 gave 
the roots, on using the quadratic formula in single precision: 
                                    x1 = - 0.999999 ;  x2 = - 1.013279 x 10-6 . 

While x1 is correct, x2 is too large by more than 1%. 
 
A better way to formulate the solution is to rationalize the numerator 

of the quadratic formula in order to ensure that b and −2b 4ac  will add 
rather than subtract. This is done by multiplying numerator and denominator 
by the quantity  

                                                −2-b-sign(b) b 4ac                   
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The second root can then computed from the un-rationalized form of 
the quadratic formula. The results of this process may be summarized as 
follows: 

          x1=2c/γ  ,        x2=γ /2a 
where: 

                                      γ  ≡ − + − 
2b sign(b) b 4ac . 

Using these relationships for the previous example gave the same 
correct value for x1, but changed the value of x2 to -1.000001 x 10-6, which 
is now correct to 7 significant digits.  

  
EXAMPLE 10.7. Series Expansion 

Other potential subtractive cancellation problems can arise if one 
attempts to compute quantities like x - sin x, or ex - 1 for small values of x. 

In the first case, subtractive cancellation is a potential hazard for 
small x since then sin(x) ≅ x. The solution to the problem follows from the 
observation that the leading term in the Taylor series expansion of sin(x) is 
x, i.e.:  

                                            − + − + ⋅⋅⋅
3 5 7x x x

sin x = x
3! 5! 7!

 

By computing the difference, x-sin x, the x cancels, leaving a power 
series starting with the term x3/3! This resulting series is much less 
susceptible to subtractive cancellation. 

 
In the second case, ex ≅ 1, for small x, so the difference 1-ex is 

bound to cause problems. Again, the solution is to expand ex as a Taylor 
series in which case the 1 again cancels leaving a better-behaved series.  
   

Such examples are not at all uncommon; indeed one has only to 
peruse the common trigonometric formulae to find a rich selection of 
potential headaches.  The important thing for the programmer is to be aware 
of the potential for loss of significance and then look for alternative methods 
for formulating the problem.   
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10.3.1. Miscellaneous Examples 
Round off error can also influence the results of routine 

programming statements like the following. 
For example, the statement, 
 

                      IF X = Y THEN ...   
 
will almost certainly be a source of error if either or both X or Y are 
floating-point numbers because it is unlikely that they will ever be found 
exactly equal. As a result, the action called for will never be implemented. 
Instead, it makes more sense to write 
 
                      IF ABS(X-Y)< δ   THEN 
 
where δ  is some defined limit of precision, e.g., 1x10-6, machine epsilon 
etc. 
 

Another related problem concerns loop indices in statements like  
 

FOR J=1 TO N  
 

where N is the result of one or more floating-point operations. Loop indices 
should be integers, but because N is a computed number, round off error 
will most certainly dictate otherwise. This difference can result in a loop 
being executed the wrong number of times. 
 

We turn now to a different kind of problem, one where the algorithm 
has a built in trap and where the solution to the problem calls for 
modification of the algorithm itself. 

 
10.3.2. Numerical Instability [FMM77] 

To this point, we have focused on the cumulative effect of multiple 
round off errors in complex computations. We now look at how even a 
single, normally inconsequential error, can sometimes propagate through a 
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calculation causing a final error of disastrous proportions.  Algorithms with 
this property are called “unstable”.  
  To illustrate how this can happen, we turn to a more detailed study 
of Example (9.2). 

Integrals of the type: 1

0

n x
n

t
x e dxI −= ∫  are common to the physical 

sciences.  Suppose we have need for a table of In values as a function of the 
integer n, for a fixed value of t. Taking t =1 for purposes of illustration, we 
can do a by-parts integration to establish the expression: 

                                   1 1 1
1 1

0 0
1n x n x

nI x e dx nx e dx− −−= = −∫ ∫  , 

from which follows the recurrence relation:  
 

In=1-nIn-1         for  n=2,3,...                              (10.7) 
 
 This seems to be a very useful expression because all we need is one 
value of I, say I1, and we can compute In for all values of n >1. This is, on 
the surface at least, a very attractive alternative to the work of performing a 
numerical quadrature for each value of n. Even I1 is easy to obtain since a 
single integration yields the result I1= e-1 = 0.367879... . 
 

Values of I were then computed from Eq (10.7) for successive values 
of n using double precision arithmetic. These results are tabulated in column 
2, labeled “Unstable Algorithm”, of Table (10.4). For comparison purposes, 
the “correct values” of the integral are listed in column 3. These were 
determined by Romberg integration to a consistency of eight digits. 

 
We note that Eq (10.7) is giving poor results by the time n ≈ 15, and 

by the time n=20, agreement is non-existent. An analysis of this discrepancy 
is simple if we make the seemingly naive assumption that the only important 
error is that of storing the original number e-1. We ignore all additional error 
associated with the computing and storing of successive results.  

  
We begin the analysis by computing the absolute error E1 associated 

with the storage of I1 (= e-1) - see Table (10.4): 
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                                          ( ) ε ε−≡ − ≤ = 1
1 1 1 1E I FL I I e          

 
If we assume no round off error beyond the storage of I1, we can 

write for the recurrence relation, Eq (10.7): 
 
                                ( ) ( ) ( )−= − = −n n 1 n-1FL I FL 1 nI 1 nFL I                 (10.8) 

where FL(In-1) is the floating-point representation of In-1. The absolute error 
in In is then, 

 ( ) ( )E − −≡ − = − − −  n n n n 1 n 1I FL I 1 nI 1 nFL I  

                                                       ( )− −= −n 1 n 1n FL I I  

                                                       −= ⋅⋅⋅n 1nE n =2,3,       , 

where we have used Equations (10.7) and (10.8) in the expression for En. 
We now have a recurrence relation for the absolute error, En. 

Starting with n = 2, and writing a few successive terms, E2, E3, etc., 
in terms of E1, we quickly establish the following relationship between En 
and E1: 
                                              n=2,3,ε−= ≤ ⋅⋅⋅1

n 1E n!E n!e  
 
where we have used the bound, |e-1|ε , for the absolute error E1. 
 

This tells us that the error in the storage of e-1 is successively 
propagated through each step of the calculation with a magnification factor 
of n! A computational nightmare! So just how valid is our assumption that 
the whole of the error in In can be explained by the error in the initial storage 
of exp(-1)?  Taking ε  = 1.1 x 10-16 as usual, we can calculate the predicted 
absolute error En for each value of n. These results are tabulated in column 
6, labeled Pred. Error, of Table (10.4), and should be compared with the 
Actual Error in Col. 5. The Actual Error is just the difference between the 
values in columns 2 and 3. As unlikely as it may seem, the error bound for 
the storage of e-1 does indeed account for most of the actual error. 

The remedy to this problem is deceptively simple. An unstable 
recurrence relation for increasing values of n may be perfectly stable if the 
relation is written for decreasing n.  Equation (10.7) then becomes: 
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                                                   −

−
= ⋅⋅⋅⋅n

n 1

1 I
I           n = ,3,2

n
 

Thus, for some starting value, In, we can compute In-1, In-2, … The 
obvious questions are, 'how accurately', and if better than the unstable 
algorithm, why? A “starting value” is derived by noting that, because  

                                  e-1 ≤ ex-1 ≤1 for 0≤x≤1: 

                                   1
1 1

0 0
1

1
n x n

nI
n

x e dx x dx−=
+

≤ =∫ ∫  .     

This result not only gives us an initial estimate of In but also tells us 
that as n → ∞ , the integral In →0, which is a conclusion that certainly 
contrasts with the trend for the unstable algorithm in Col. 2, Table 10.4. 

 
To test this proposed solution to the instability problem, suppose we 

take n = 60, so that I60 (initial guess) = 1/61, and then compute In for the 
same set of n values as used previously. The computed values of In-1 are 
then listed in Col. 4 of Table 10.4 under the heading “Stable Algorithm”. It 
is seen that the value of the computed integral, and the correct values in Col. 
3, are in complete agreement to the number of figures stated.  The new 
algorithm is clearly very stable. 
   
                              Table 10.4. Stable Vs Unstable Algorithm 
 
 
 
 

 
 
 
Why has simply rewriting the recurrence relation changed a 

hopelessly unstable algorithm to an extremely stable one?  In the unstable 
algorithm, we used a very precise initial value I1= e-1, and then watched how  
roundoff error in the initial storage of I1 lead to a total corruption of 
subsequent values of I. By contrast, with the stable algorithm we started 
with an approximate initial value for In, yet obtained excellent subsequent 
values for I.   
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The analysis of the stable algorithm is similar to that done 
previously, but with one major difference. For the unstable algorithm we 
looked at propagated roundoff error in I1 whereas here we ignore round off 
error entirely, and instead concentrate on the effect of the initial 
approximation, In. It is easy to show that the error in the (n-1)th value En-1 is 
related to the error in the starting value En by the expression: 

                                                          1
1

n nE E
n− = . 

Again we can derive a recurrence relation linking the absolute errors. 
Writing out a few terms establishes the error Ek in terms of En, namely, 
 

               − − ⋅⋅⋅
= =

− − ⋅⋅⋅ + − − ⋅⋅⋅ + − ⋅⋅⋅
1 k(k 1)(k 2) 1

E E Ek n nn(n 1)(n 2)(k 1) n(n 1)(n 2)(k 1)k(k 1) 1
  

or:                                                = nk
k!E E
n!

 .                                                

 
Here we see that the absolute error, En, in the initial estimate of In, is 

damped by the k!/n! term. Since n > k, the larger n is relative to k, the 
smaller the absolute error in the kth computed integral. 

This has been a nice example of how a simple analysis can 
sometimes help guide one's approach to implementing an algorithm.  

Recurrence equations are not at all uncommon; in fact they appear 
frequently in the numerical solution of differential equations. The rule here 
is to be wary of their predilection for treachery.   
 
10.3.3. Analysis of a Simple Function Using Multiple Precision 
Arithmetic [Lec], [McC02], [Rum88], [Ral65], [Bailey], [Kre], [Hof97] 
  Here we look at a problem that seems, at least on the surface, to be a 
typical function that we might want to evaluate using a computer. In fact, 
this function was designed to illustrate an ominous fact of computing, and 
that is this – you really never know if your results are right because 
rounding errors can mutilate any fixed precision floating point computation. 
  

Consider the following function, whose value we want at x = 77617 
and y = 33096: 
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6 2 2 2 6 4 8( , ) 333.75 (11 121 2) 5.5 /(2 )f x y y x x y y y y x y= + − − − + +  
 

Straight forward substitution using single and double precision gave: 
 f = 6.33825 x 1029    single precision 
 f = 1.17260394005317            double precision 

All products were done using successive multiplications, to obviate 
the use of built-in library functions, that is, instead of writing x^n, each 
product was coded as x*x*…*x.  

 
 The fact that single and double precision disagree is not surprising. 
To confirm the double precision result, Leclerc [Lec] recomputed the 
function using extended precision (128 bit, 35 digits), and found exact 
agreement with the double precision result – a finding that should certainly 
make one confident about the calculation. However, what is surprising as 
well as disconcerting is the fact that not even the sign is correct for either 
the double or extended precision computation! In other words, extended 
precision, good to 35 digits, was found to be no better than ordinary double 
precision when dealing with this function.   

The correct result, according to Leclerc [Lec] who used variable 
precision interval arithmetic, was trapped in the following 40 digit interval: 

 
f = – 0.827396059946821368141165095479816292005 
f = – 0.827396059946821368141165095479816291986 
 

Using Mathematica, [McC02], the author confirmed this interval by 
computing the following exact (also to 40 digits) result: 

 
f = – 0.8273960599468213681411650954798162919990 
 

which, according to Mathematica, is equivalent to the fraction  -
54767/66192.   

 
The reader might find it interesting to rationalize what has happened 

here. The following table gives the value of each term in the equation for 
f(x,y), to 40 digits of precision.  
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Table 10.5. Analysis of: 6 2 2 2 6 4 8( , ) 333.75 (11 121 2) 5.5 /(2 )f x y y x x y y y y x y= + − − − + +  

 
It is worth pointing out that the double precision (and extended 

precision for that matter) result, i.e., 1.17260…, is exactly equal to the just 
the last term in the function, namely, x/(2y), which means that all of the 
other terms in the function were rounded to zero. Mathematica confirms this 
result, provided we use the program’s facility for exact arithmetic. That is 
how the numbers in the previous table were obtained. In addition, simply 
changing the order in which the terms in the function are evaluated (again in 
double precision) will change the final result due to how rounding is done. 
The reader might find this an instructive exercise in his or her programming 
language of choice.  

Admittedly this problem was cleverly designed to demonstrate the 
nature of rounding errors, but it is not beyond the realm of possibility that a 
very unlucky coincidence could result in such a ill behaved function. The 
point here is that you can never really know if your results are correct and 
further, as we have seen agreement between double and extended precision 
is no guarantee of anything. This emphasizes the second point stated by 
Leclerc [Lec]: “By simply observing floating point results at increasing 
precision (single, double, extended), no indication of the seriousness of 
round off error may be given.” The importance of this remark for scientific 
computation cannot be overstated. 
 

Expression Exact Value 
(33375/100) * y^6   0.0000004386057508463931619307038310400000 x 10^36 
x * x  0.0000000000000000000000000060243986890000 x 10^36 
11 * x^2 * y^2    0.0000000000000000725867591160010400640000 x 10^36 
-y^6  -0.0000000013141745343712154664590376960000 x 10^36 
-121 *  y^4 - 2   -0.0000000000000001451735182079044853780000 x 10^36 
(11 * x^2y^2 - y^6 – 121* y^4 - 
2)  

-0.0000000013141746069579745583624830100000 x 10^36 

x^2 * (11 * x^2y^2 - y^6 – 
121* y^4 - 2)  

-7.9171117792747122074942966322287738900000 x 10^36 

(55/10)  * y^8    7.9171113406689613611011347015249428480000 x 10^36 
(33375/100) * y^6 + x^2 * (11 
* x^2y^2 - y^6 – 121 * y^4 - 2) 
+ (55/10) * y^8   

-2.0000000000000000000000000000000000000000 

x/(2 * y)   1.172603940053178631858834904520183708001 
(33375/100) * y^6 + x^2 * (11* 
x^2y^2 - y^6 - 121* y^4 - 2) + 
(55/10) * y^8 + x/(2 * y)  

-0.8273960599468213681411650954798162919990 
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CONCLUDING REMARKS [Bailey] 
While it is true that computer round off error is unlikely to be a 

problem in the vast majority of routine computations, it is nevertheless, 
important to be aware of the potential for problems. However, it should also 
be obvious that a detailed floating point error analysis will be prohibitive for 
anything other than the most trivial of computational problems and that 
severely limits its usefulness. So what choices do we have? At the very least 
one should employ the simple expedients discussed above as standard 
programming practices. Even then, there is no assurance that your 
computations will be correct. 

Probably one of the more successful general approaches to handling 
floating point rounding errors is the use of interval arithmetic, which, 
provided the problem is not ill conditioned, is capable of giving an 
acceptable bound for results. The strength of interval arithmetic is that it 
lends itself to software implementation which makes the analysis automatic. 
Such implementations are available in FORTRAN and C as well as for 
symbolic packages like Maple, Mathematica and MATLAB. 

Arbitrary precision FORTRAN and C libraries are also available 
where the precision is dictated by software, not hardware, so speed is the 
tradeoff. Still, if the problem is sufficiently ill conditioned, the computed 
solution will be meaningless. In any case, interval arithmetic and arbitrary 
precision arithmetic are solutions well worth investigating when the 
problem is complicated and the error bounds must be controlled. 
  


