CALCULATION OF THE ENTROPY FOR AN ARBITRARY PROCESS
By definition, the entropy S is defined in terms of reversible processes only, whereas real processes are always irreversible; so the question is, how do we calculate the entropy of an arbitrary irreversible process? 

In the following diagram, we imagine an adiabatically isolated ‘composite’ which contains within it the surroundings β, and the system α, which is separated from β by an adiabatic or diathermal wall.  The surroundings, β of the composite are composed of work and heat reservoirs of an infinite extent and at constant volume so that the properties of the surroundings (eg, the temperature) do not change when β interacts with α.  The surroundings, β, are sometimes called the ‘universe’ but we don’t need anything that grandiose – in fact, the surroundings are often nothing more than a simple constant temperature bath containing the system which itself may be a glass vessel containing a reaction mixture. The glass is then the diathermal wall separating α and β. The constant temperature bath might or might not be adiabatically shielded.
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Second Law
Using our imagined concept of an adiabatically isolated ‘composite’, we can write,

dStotal = dSsys+ dSsurr  
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 dSα + dSβ    for the composite
The second law then states:

If a process occurs in an ‘isolated composite’, then
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Thus dStotal can serve as a general criterion for irreversible change.  Note that dSsys and dSsurr can have any sign as long as the total is positive. The only problem is that in order to use dStotal as a criterion for say, determining if an arbitrary reaction can actually occur spontaneously is that dSsurr is generally difficult or often impossible to calculate. That is why we preferably use dGT,P or dAT,P for this purpose since all of the terms in these functions refer to the system only, and not the surroundings. The price we pay for this convenience however is the loss of generality because of the restrictions of constant T, P or V.

This then brings us to the question of just how we actually calculate ∆Sα and ∆Sβ in order to get ∆Stotal. We start with the system entropy.

System Entropy Change

Here we devise a reversible analog or model of the actual process which connects the final and initial states of the system. Since dS is exact then dS (reversible model) = dS (actual process). Note that the reversible model need not have anything in common with the actual process except the same initial and final states! We then compute 
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 where 
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is the reversible heat transferred to or from the system at the temperature 
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 FOR THE REVERSIBLE MODEL, not the actual process. For closed systems that depend on only P, V and T we can use any of the following relationships for the SYSTEM.  Be sure you know how to derive these equations!
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Surroundings Entropy Change
This is a bit tricker.  To begin with, assume the walls surrounding the system are diathermal so the system can exchange heat with the surroundings. Remember the walls surrounding the composite are adiabatic and rigid and that the heat reservoir part of the surroundings has an infinite heat capacity so that Tβ is constant no matter how much heat is exchanged with α.  We also assume the ‘work reservoir’ has an infinite capacity in the sense that the surroundings do not change irrespective of how much work is done on or by the system. From the first law we have:

dUβ = dQβ + dWβ = dQβ   because dWβ = 0 due to the constant volume property of β.
This means dQβ is a state function i.e., dQβ  is exact because dUβ  is exact, which in turn implies,

1)   dQβ (rev) = dQβ (actual) 

in other words, the actual amount of heat exchanged between the system and the surroundings is the same irrespective as to how the process was carried out, i.e., reversibly or irreversibly. That is, from the viewpoint of the surroundings, it does not matter if the process is reversible or irreversible because the amount of heat transferred depends only on the end points of the process.
Now, the composite has an adiabatic wall so 

2)  dQ  (composite) = dQβ (actual) + dQα (actual) = 0   
where we note that we are talking about the actual process, not the model process for the system!

 From 2) we have
        dQβ (actual) =  - dQα (actual)   or, on using 1) above, we have,  

        dQβ (rev) = - dQα (actual)         which is the result we are after
So finally we can write, using the formal definition of the entropy,
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which is a splendid result for now we can, in principle at least, calculate 
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using the first law for the system, not the surroundings. Thus, we have a recipe for calculating the entropy change in the surroundings by asking ourselves ‘how much heat was actually transferred between α and β in the REAL process’ and at what temperature?  Then, if you are able to calculate the ratio, 
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 you can calculate
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Comments
· If the system has an adiabatic wall and the process is irreversible then 
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=  0  so  dSsurr = 0 so now dStotal = dSsystem ≥ 0 because 
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 ≠  0.  Remember, the reversible model and the actual process share only the end points of the process – otherwise the two processes will always be quite different physically!

· If the system has an diathermal wall and the process is irreversible then neither dSsys or dSsurr will be zero and their sum will be > 0. Note that either entropy can be negative, but not both.
· If the actual process is reversible and the system wall is diathermal so Tβ=Tα, then 
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and dStotal = 0  
· Likewise, if the actual process is reversible and the system wall is adiabatic, then, as we have seen above, 

dSβ = 0  and
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= 0 so again dStotal = 0  
The point is, reversible processes are indistinguishable from equilibrium so dStotal = 0 always, as the 2nd law asserts.       
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