36. Anoxygenic photosynthesis is often limited by

- a) too much low energy (long wavelength) light
- b) too much high energy (short wavelength) light
- c) * low amounts of reduced compounds to use as electron donors
- d) the bacteriochlorophyll A structure
- e) too low CO₂ concentrations for carbon fixation

37. External antenna pigments

productively absorb radiation of

_ than the reaction center

pigment.

- a) longer wavelengths
- b) * shorter wavelengths
- c) the same wavelengths
- d) both a and b
- e) a, b, and c

38. Why are there two photosystems in oxygenic photosynthesis?

- a) because two photosystems are required to split water
- b) because two photosystems are required to reduce NADP
- c) * because one photosystem is not enough to both split water and reduce NADP
- d) because two photosystems are required to make ATP
- e) to pump H+ ions to make ATP

39. To make NADPH ($E'_0 = -324 \text{ mV}$) it must be coupled to a reaction with a

- a) * more negative E'_0
- b) more positive E'_0
- c) the same E'_0
- d) a positive ΔG

40. What is the molecule that can transfer an electron to NADPH for CO_2 fixation?

- a) p680*
- b) p680+
- c) p680
- d) p700
- e) * p700*

41. The molecule that provides the oxidative power for photolysis of water is:

- a) p680*
- b) * p680⁺
- c) p680
- d) p700
- e) p700*

42. Why does Chlorophyll A absorb mostly in the blue portions of the spectrum?

- a) to protect the plant
- b) * because these are high energy photons
- c) to allow the plant to be green
- d) because the reaction center absorbs ultraviolet light
- 43. Why does the action spectrum so

closely parallel the absorption spectrum?

- a) because chlorophyll A can absorp so many wavelenghts of light
- b) * because most of the light is used for photosynthesis
- c) because plants are green
- d) because the action spectrum and the absorption spectrum are the same thing

44. How many electrons are released per molecule of water that is photolysed?

- a) 1
- b) * 2
- c) 4
- d) 8

- 45. Reduced ferridoxin:
 - a) can pass electrons to NADP⁺
 - b) is associated with photosystem II
 - c) is involved in cyclic photophosphorylation
 - d) all of the above
 - e) * a and c

46. The proton motive force (PMF) that drives ATP synthesis in chloroplasts is mostly generated by:

- α) ΔΨ
- b) $* \Delta pH$
- c) the production of NADPH
- d) a combination of $\Delta \Psi$ and $\Delta p H$
- e) the F-type ATPase

47. C_3 plants are called C_3 plants because:

- a) their stomata have 3 spines
- b) $*^{14}$ C from 14 CO₂ accumulates in compounds with 3 carbon atoms
- c) 3 CO₂ molecules are fixed per Calvin cycle in these plants
- d) their Rubisco enzyme has 3 subunits
- e) ${}^{14}C$ from ${}^{14}CO_2$ is incorporated at the C₃ position of glucose
- 48. Rubisco can:
 - a) add CO_2 to ribulose bis phosphate
 - b) add O_2 to ribulose bis phosphate
 - c) split 6-carbon molecules into 2 3carbon molecules
 - d) a and b
 - e) * a, b and c

49. Why are 12 molecules of PGA needed per Calvin cycle?

a) * If there were less than 12 there would not be enough to remake the ribulose bisphosphate substrate for Rubisco after using 2 GAP to make glucose

- b) The Rubisco enzyme binds 12 PGA molecules
- c) The enzymes of the Calvin Cycle need to use 12 NADPH per cycle
- d) 24 ATPs have to be hydrolyzed per cycle
- e) There is too much PGA in the chloroplast

50. Why do C_4 plants in hot

environments spend extra energy to fix low concentrations of CO_2 ?

- a) * because the CO₂ concentration in their stomata gets very low
- b) because they get more energy from C_4 compounds
- c) because CO_2 concentration in hot air is lower than in cool air
- d) because they have large amounts of phosphoenolpyruvate in their cells
- e) because they have higher ATP pools than C_3 plants