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Abstract. In this paper we propose two new classes of asymptotically distribution-free Renyi-type tests for

testing the equality of two risks in a competing risk model with possible censoring. This work extends the work of

Aly, Kochar and McKeague [1994, Journal of American Statistical Association, 89, 994–999] and many of the

existing tests for this problem belong to these newly proposed classes. The asymptotic properties of the proposed

tests are investigated. Simulation studies are done to compare the performance with existing tests. A competing

risks data set is analyzed to demonstrate the usefulness of the procedure.

Keywords: competing risks, counting processes, cumulative incidence function, martingales, Nelson-Aalen

estimator of cumulative hazard, ordered alternatives

1. Introduction

Consider a competing risks model with two causes of failure. Let T denote the lifetime of a

subject, assumed to be continuous, with distribution function F and survivor function S,

and let � denote the cause of failure, that is, {� ¼ j} is the event that the failure is due to

risk j, j ¼ 1, 2. In many practical situations it is important to know whether the various

risks under consideration are equally serious or whether some risks are more serious than

others, within the environment in which the risks are acting simultaneously. To quantify

this, the concept of (ordinary) hazard rate has been generalized in the competing risks

model to the notion of cause specific hazard rates (CSHR), which is defined by

�jðtÞ ¼ lim
Dt!0

1

Dt
Pðt � T < t þ Dt; � ¼ jjT � tÞ; j ¼ 1; 2: ð1Þ

The overall hazard rate for time to failure satisfies the relation �T (t) ¼ �1(t) þ �2(t). Cause
specific hazard rates provide detailed information on the extent of each type of risk at each

time point t. In models where the various causes of failure are independent, �j(t) reduces to
the (ordinary) hazard rate corresponding to the marginal distribution of failure from the jth

cause. Prentice et al. (1978) emphasize that only those quantities which are expressible in
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terms of cause specific hazard rates are estimable and can be estimated from the competing

risks data even if the risks are dependent. Censoring is possible arising from removal of

subjects before failure from either cause 1 or cause 2 and it may be due to combination of

other competing risks. Denote the censoring time by C and its survivor function by SC. We

assume that SC(t) > 0 for all t and C is independent of T. We now identify three causes of

failure, � ¼ 0, 1, 2, where {� ¼ 0} is the event that the subject was censored. Under right

censoring, we observe n independent, identically distributed copies (Xi, �i), i ¼ 1, . . . , n of

(X, �), where X ¼ min(T, C ). More specifically, on the basis of these data, we formulate the

problem of testing the null hypothesis,

H0 : �1ðtÞ ¼ �2ðtÞ for all t; ð2Þ

against the alternative

Ha : �1ðtÞ � �2ðtÞ for all t; with strict inequality for some t: ð3Þ

In the literature such comparisons have also been made in terms of the cumulative

incidence functions F1 and F2 (see Gray, 1988 and Luo & Turnbull, 1999), where

FjðtÞ ¼ PðT � t; � ¼ jÞ ¼
Z t

0

SðuÞ�jðuÞdu; j ¼ 1; 2:

Note that the null hypothesis H0 in (2) is equivalent to

H0 : F1ðtÞ ¼ F2ðtÞ; t � 0

and Ha in (3) implies

Hb : F1ðtÞ � F2ðtÞ; t � 0 with strict inequality for some t:

Several tests have been proposed in the literature for testingH0 against various alternatives

(see Kochar, 1995 and Carriere & Kochar, 2000). Most of the tests discussed in the literature

can be expressed as functionals of weighted log-rank type statistics of the form

LnðtÞ ¼
Z t

0

wðuÞdð�̂̂2 	 �̂̂1ÞðuÞ; ð4Þ

where �jðtÞ ¼
R t

0
�jðuÞdu is the cumulative cause specific hazard rate function for risk j,

j ¼ 1, 2 and the Nelson-Aalen estimator (see, e.g., Fleming and Harrington, 1991) of �j is

�̂̂jðtÞ ¼
X
i:Xi�t

Ið�i ¼ jÞ=Ri

where Ri ¼ #{k : Xk � Xi} is the size of the risk set at time Xi–. The weight function w(u)

reflects the importance attached to the difference between the CSHRs at time u. The tests
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proposed by Yip and Lam (1992) are based on studentized Ln(l) statistics for various

choices of w. Although these tests may be able to detect certain kinds of departure from H0

with high power, they may not be consistent against general alternatives.

Aly, Kochar and McKeague (1994) proposed two Renyi-type tests for this problem. The

first one, which is suitable for comparing cumulative incidence functions, is based on the

statistic

D3n ¼ sup
0�t<l

/nðtÞ;

where

/nðtÞ ¼
Z t

0

Ŝ̂T ðu	ÞŜ̂Cðu	Þ1=2 dð�̂̂2 	 �̂̂1ÞðuÞ;

and ŜT and ŜC are the product-limit estimators of ST and SC, respectively. Their second test

which is suitable for testing against Ha is based on the statistic

D4n ¼ sup
0�s<t<l

f/nðtÞ 	 /nðsÞg:

The rationale behind these tests is that /n is an estimator of

/ðtÞ ¼
Z t

0

ST ðu	ÞSCðu	Þ1=2ð�2ðuÞ 	 �1ðuÞÞdu

and Ha holds if and only if / is increasing. Thus large positive values of D4n give evidence

of a departure from H0 in the direction of Ha. This property will continue to hold if instead

of ST (u–)SC(u–)
1/2, we use some other suitable nonnegative weight function. It was

shown in Aly, Kochar and McKeague (1994) that the choice of the weight function ŜT (u–)

ŜC (u–)
1/2 leads to asymptotically distribution-free tests when the data are censored and

these tests are exactly distribution-free otherwise. An unpleasant property of these tests is

that they are very conservative. This is probably due to the fact that the finite sample

distributions of the statistics n1/2D3n and n1/2D4n cannot be approximated closely by their

respective asymptotic distributions when n is not extremely large.

In Section 2, we propose two new classes of asymptotically distribution-free tests which

are similar to the studentized versions of the D3n and D4n statistics, but with arbitrary

nonnegative weight functions chosen from a flexible class of weight functions. In

Section 3, we carry out an intensive simulation study to compare the performance of

the various tests. It seems from this study that the studentized statistics using the estimated

covariance functions appear to converge to the asymptotic null distribution much faster,

which improves the small sample approximations significantly. Moreover, the proposed

tests are highly flexible and this approach unifies the existing procedures. The proposed
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methods are illustrated by application to data from Hoel (1972) in Section 4. Section 5

contains some closing remarks and discussion.

2. The Proposed Classes of Tests

In this section, we generalize the tests of Aly, Kochar and McKeague (1994) by taking

different weight functions w. With suitable studentization, this yields a versatile family of

tests. It is well known that under H0, n
1/2Ln(t) is a martingale with predictable variation

process �2(t) which, under some mild conditions, can be estimated consistently by

S2nðtÞ ¼
Z t

0

w2ðuÞ
Y 2ðuÞ=n

dNðuÞ; ð5Þ

where YðuÞ ¼
Pn

i¼1 IðXi � uÞ is the total number of items at risk at u–, and N̄(u) is the

total number of deaths up to time u. Using Ln(t) as in (4), we propose the following three

classes of test statistics for testing H0:

AnðwÞ ¼
LnðlÞ
SnðlÞ ;

BnðwÞ ¼ sup0�t<l
LnðtÞ
SnðlÞ ;

CnðwÞ ¼ sup0�s<t<l
LnðtÞ 	 LnðsÞ

SnðlÞ :

Large values of the statistic indicate statistical significance for tests of H0. It follows

from the results given in the Appendix that under H0 and under some regularity conditions,

{n1/2 Ln(t) / Sn(l)} converges weakly to {W(t), t � 0}, a standard Brownian motion. As a

consequence, under H0,

n1=2AnðwÞ ! Z; a standard normal variable; ð6Þ

P½n1=2BnðwÞ > b ! P½sup0<t<1W ðtÞ > b ¼ 2ð1	FðbÞÞ; b � 0; ð7Þ

n1=2CnðwÞ ! sup0�t�1 j W ðtÞ j; ð8Þ

where F is the standard normal distribution function.

Consequently, for c > 0

Pðn1=2Cn � cÞ ! 4

p

Xl

k¼0

ð	1Þk

2k þ 1
exp

�
	 p2ð2k þ 1Þ2=8c2

�
: ð9Þ
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Using (9) the asymptotic 0.90, 0.95 and 0.99 quantiles of n1/2Cn are found to be 1.96,

2.241 and 2.807, respectively.

When an ordered alternative is unsuitable, it can be of interest to test H0 against the

general alternative: F1(t) 6¼ F2(t) for some t, which is equivalent to �1(t) 6¼ �2(t) for
some t. In that case it is natural to use the Kolmogorov-Smirnov type test statistic

B*n ¼ supt�0 jLnðtÞj=SnðlÞ. Using the same kind of arguments as in Aly, Kochar

and McKeague (1994), it follows that under H0, n1/2B*n converges in distribution to

sup0�t�1 jW ðtÞj. This gives an omnibus test—consistent against arbitrary depar-

tures from H0. The corresponding two-sided analog of Cn is C*n ¼ sup0�s<t<l
jLnðtÞ 	 LnðsÞj=SnðlÞ and its asymptotic null distribution is given in the Appendix.

The class An was proposed and studied by Yip and Lam (1992). In this class the choice

of the weight function w(u) ¼ Ȳ(u) leads to the sign test whereas the choice w(u) ¼ Ȳ(u)

N̄(u–) gives a test which is equivalent to the one proposed by Bagai, Deshpandé and

Kochar (1989a) for testing the equality of two hazard rates. On the other hand, the weight

function w(u) ¼ Ȳ 2(u) results in the statistic proposed by Bagai, Deshpandé and Kochar

(1989b) for testing against a stochastic ordering alternative. Previous studies show that the

tests belonging to the class An have good power for testing against some specific

alternatives, but they cannot be expected to be consistent against all alternatives to H0.

As will be seen later, the tests belonging to the classes Bn and Cn are sensitive to a wider

range of alternatives and at the same time they maintain the full efficiency of the

corresponding statistics belonging to the class An. In the uncensored case, the tests of

Aly, Kochar and McKeague (1994) are extensions of the sign test to Renyi-type statistics

and they are seen to be quite powerful for testing against alternatives where the cause

specific hazard rates are proportional to each other and for this alternative the sign test is

the UMP test. Similar observations were made by Gill (1980) and Fleming et al. (1987) in

the case of classical two-sample problem when they extend the linear rank statistics to

Renyi-type statistics using the same score function.

3. Simulations and Power Comparisons

To illustrate the flexibility of the proposed classes of tests, a large scale simulation study

was conducted. The null hypothesis H0 was tested against the alternatives

(i) H1: �2(t) ¼ (	 þ 1) �1(t);
(ii) H2: �2(t) ¼ �1(t) {1 þ 	 �1(t)}; and

(iii) H3: �2(t) ¼ {�1(t)}
exp(	/2).

The alternatives H1 and H2 belong to the class of order restricted alternatives Ha and one-

sided tests were carried out for these. The alternative H3 was considered by Lam (1998)

where the two CSHRs cross and, hence, a 2-sided test was carried out. For simplicity, we let

�1(t) ¼ 1, the level of significance 
 ¼ 0.05, and 	 is set to be 0 and 1 at which 	 ¼ 0

corresponds to the null hypothesis. For H1, the failure times T ¼ min(Y1, Y2) were
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generated from the absolutely continuous bivariate exponential distribution of Block and

Basu (1974) with density

f ðy1; y2Þ ¼
ð�0þ�1þ�2Þ�1ð�0þ�2Þ

�1þ�2
e	�1y1	ð�0þ�2Þy2 if y1 < y2;

ð�0þ�1þ�2Þ�2ð�0þ�1Þ
�1þ�2

e	�2y2	ð�0þ�1Þy1 if y1 > y2

8<
:

where �0 is the dependence parameter and �0 ¼ 0 corresponds to the independence of the

two risks. In this case, the cause specific hazard rates are proportional to each other and are

given by

�jðtÞ ¼
�jð�0 þ �1 þ �2Þ

�1 þ �2

j ¼ 1; 2:

We set �0 ¼ 0 and 1 in the study under H1. For H2 and H3, we simply assumed the two

risks to be independent of each other. In all the three cases, the censoring variable C was

taken to be independently exponentially distributed. Three levels of censoring, namely no

censoring, moderate and heavy censoring were considered to study the effect due to

censoring. For each combination of the alternative hypothesis and the set of parameters

assumed, 10000 data sets, each with a sample size of n ¼ 100 were generated.

The weight functions used are

(a) w1(u) ¼ Ȳ(u);

(b) w2(u) ¼ Ȳ(u) �̂̂(u–);
(c) w3(u) ¼ Ȳ2(u);

(d) w4(u) ¼ Ȳ(u) N̄(u–);

(e) w5(u) ¼ ŜT (u–) ŜC (u–)
1/2

where the weight functions w1 and w2 are the optimal weight functions for the class of tests

An, which give rise to asymptotically locally most powerful tests for H1 and H2,

respectively (Yip and Lam, 1993). The tests generated by these five weight functions

are compared with the tests n1/2D3n and n1/2D4n of Aly, Kochar and McKeague (1994),

denoted by (f ) under the classes Bn and Cn, respectively. The empirical type I error rates

and the empirical powers of the tests with 	 ¼ 1 are given in Tables 1, 2, and 3.

Under H0 (	 ¼ 0), the tests of Aly, Kochar and McKeague (1994) are more conservative

in the sense that their empirical type I error probabilities are much smaller than the

nominal level of significance 0.05, particularly when the censoring proportion is large.

However, the tests proposed in this paper perform much better as their empirical type I

error rates are quite close to the nominal level, and are not much affected by the magnitude

of the censoring proportion. This indicates that the studentized technique has improved the

rate of convergence of the proposed statistics to their asymptotic values which gives rise to

more accurate inferential procedures.

KOCHAR, LAM AND YIP282



The simulation study also demonstrates the importance of the weight function used.

When testing against order restricted alternatives Ha and Hb, all tests with weight

functions considered above perform quite well. The powers of the tests highly depend

on the choice of the weight function. The three classes of tests, with optimal weight

function generated from An, give good power for all values of 	, and not just for

local alternatives. In particular, under the usual order restricted alternatives, the test

based on An is, in general, more powerful than the tests based on Bn and Cn for any

arbitrary nonnegative weight function w(u). In the cases with crossing CSHRs, the

Renyi-type of tests based on B*n and C*n are generally more sensitive and more

powerful than that of A*n. It is observed that the proposed two classes of tests are

more versatile in the sense that they are power robust. The Renyi-type tests are

generally more sensitive to departure from null hypothesis as is illustrated by the

following example.

Table 1. Empirical type I error rates and powers of the tests under H1.

No censoring 18 – 35% censoring 45 – 60% censoring

Empirical type I error rates (b ¼¼ 0)

�0 ¼ 0.0 An Bn Cn An Bn Cn An Bn Cn

(a) 0.0458 0.0460 0.0396 0.0515 0.0447 0.0365 0.0517 0.0418 0.0332

(b) 0.0532 0.0376 0.0314 0.0505 0.0317 0.0269 0.0537 0.0302 0.0216

(c) 0.0530 0.0470 0.0367 0.0515 0.0465 0.0316 0.0495 0.0413 0.0284

(d) 0.0497 0.0416 0.0372 0.0510 0.0419 0.0351 0.0548 0.0423 0.0332

(e) 0.0525 0.0439 0.0404 0.0509 0.0430 0.0368 0.0533 0.0410 0.0347

(f ) - 0.0359 0.0307 - 0.0271 0.0216 - 0.0138 0.0086

�0 ¼ 1.0 An Bn Cn An Bn Cn An Bn Cn

(a) 0.0441 0.0480 0.0363 0.0520 0.0443 0.0344 0.0491 0.0408 0.0321

(b) 0.0493 0.0336 0.0292 0.0500 0.0323 0.0268 0.0511 0.0319 0.0230

(c) 0.0478 0.0465 0.0345 0.0531 0.0498 0.0325 0.0493 0.0409 0.0284

(d) 0.0477 0.0395 0.0360 0.0506 0.0402 0.0357 0.0526 0.0398 0.0336

(e) 0.0501 0.0456 0.0395 0.0510 0.0448 0.0362 0.0500 0.0398 0.0344

(f ) - 0.0378 0.0286 - 0.0305 0.0219 - 0.0188 0.0126

Empirical powers (b ¼¼ 1.0)

�0 ¼ 0.0 An Bn Cn An Bn Cn An Bn Cn

(a) 0.9850 0.9496 0.9266 0.9034 0.8737 0.8330 0.7714 0.7264 0.6607

(b) 0.7862 0.7894 0.6869 0.6755 0.6587 0.5343 0.5290 0.4865 0.3604

(c) 0.9030 0.8478 0.8184 0.8203 0.7462 0.7024 0.6687 0.5738 0.5108

(d) 0.9072 0.8981 0.8380 0.8165 0.7963 0.7099 0.6743 0.6361 0.5429

(e) 0.9609 0.9428 0.9210 0.8991 0.8732 0.8299 0.7618 0.7240 0.6537

(f ) - 0.9292 0.9000 - 0.8348 0.7755 - 0.6053 0.5076

�0 ¼ 1.0 An Bn Cn An Bn Cn An Bn Cn

(a) 0.9536 0.9453 0.9224 0.9219 0.8920 0.8588 0.8167 0.7740 0.7185

(b) 0.7771 0.7850 0.6804 0.6979 0.6870 0.5666 0.5716 0.5318 0.4098

(c) 0.9034 0.8477 0.8196 0.8415 0.7665 0.7239 0.7163 0.6264 0.5666

(d) 0.9020 0.8868 0.8280 0.8415 0.8203 0.7417 0.7228 0.6851 0.5909

(e) 0.9571 0.9377 0.9175 0.9163 0.8907 0.8541 0.8088 0.7709 0.7110

(f ) - 0.9219 0.8946 - 0.8599 0.8136 - 0.6872 0.5986
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4. An Example

The three classes of tests were applied to a set of mortality data given in Hoel (1972)

which has been studied by many researchers in the field of competing risks analysis. The

data were obtained from a laboratory experiment on RFM strain male mice which had

Table 3. Empirical type I error rates and powers of the tests under H3.

No censoring 30 – 45% censoring 45 – 70% censoring

Empirical type I error rates (b ¼¼ 0)

A*n B*n C*n A*n B*n C*n A*n B*n C*n
(a) 0.0553 0.0410 0.0424 0.0540 0.0460 0.0350 0.0471 0.0376 0.0276

(b) 0.0480 0.0332 0.0275 0.0491 0.0298 0.0235 0.0456 0.0217 0.0140

(c) 0.0480 0.0434 0.0305 0.0541 0.0465 0.0285 0.0490 0.0423 0.0239

(d) 0.0466 0.0401 0.0349 0.0482 0.0396 0.0331 0.0473 0.0337 0.0271

(e) 0.0482 0.0432 0.0369 0.0515 0.0453 0.0349 0.0472 0.0336 0.0268

(f ) - 0.0329 0.0274 - 0.0243 0.0175 - 0.0081 0.0032

Empirical powers (b ¼¼ 1.0)

A*n B*n C*n A*n B*n C*n A*n B*n C*n
(a) 0.1105 0.3204 0.2363 0.2559 0.4389 0.2917 0.4157 0.4894 0.3582

(b) 0.2228 0.1639 0.2092 0.0687 0.0386 0.0538 0.0494 0.0313 0.0174

(c) 0.5132 0.6619 0.4854 0.6491 0.6956 0.5398 0.6702 0.6485 0.4978

(d) 0.1333 0.0957 0.1774 0.0516 0.0575 0.0607 0.1156 0.1280 0.0793

(e) 0.1317 0.3752 0.2190 0.2110 0.3677 0.2353 0.2900 0.3547 0.2349

(f ) - 0.3169 0.1750 - 0.2657 0.1485 - 0.1507 0.0755

Table 2. Empirical type I error rates and powers of the tests under H2.

No censoring 25 – 35% censoring 55 – 60% censoring

Empirical type I error rates (b ¼¼ 0)

An Bn Cn An Bn Cn An Bn Cn

(a) 0.0422 0.0435 0.0374 0.0506 0.0424 0.0322 0.0472 0.0396 0.0295

(b) 0.0494 0.0329 0.0277 0.0471 0.0295 0.0239 0.0507 0.0282 0.0196

(c) 0.0476 0.0447 0.0331 0.0510 0.0454 0.0310 0.0462 0.0401 0.0262

(d) 0.0477 0.0398 0.0358 0.0473 0.0364 0.0301 0.0489 0.0367 0.0287

(e) 0.0481 0.0425 0.0386 0.0509 0.0423 0.0332 0.0487 0.0380 0.0287

(f) - 0.0352 0.0284 - 0.0271 0.0181 - 0.0120 0.0066

Empirical powers (b ¼¼ 1.0)

An Bn Cn An Bn Cn An Bn Cn

(a) 0.4509 0.3914 0.4038 0.2731 0.2019 0.2025 0.1322 0.0958 0.0896

(b) 0.5931 0.5285 0.4678 0.3599 0.2829 0.2322 0.1721 0.1155 0.0861

(c) 0.2162 0.1485 0.1395 0.1258 0.0876 0.0720 0.0816 0.0593 0.0425

(d) 0.6023 0.5190 0.4969 0.3578 0.2829 0.2622 0.1690 0.1235 0.1106

(e) 0.4323 0.3466 0.3665 0.2739 0.2059 0.2102 0.1446 0.1084 0.1004

(f) - 0.3047 0.3141 - 0.1600 0.1472 - 0.0512 0.0366
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received a radiation dose of 300 roentgens at ages of 5 to 6 weeks and were kept in a

conventional laboratory environment. Causes of death were classified into three distinct

groups, namely thymic lymphoma, reticulum cell sarcoma, and other causes. In this

application, the deaths due to other causes are treated as censored observations and are

assumed to be independent of the two types of cancer. The estimates of the cumulative

hazard of dying from thymic lymphoma and reticulum cell sarcoma are given in Figure 1.

Aly, Kochar and McKeague (1994), based on the plots of the smoothed estimates of the

CSHRs, suggested that the CSHRs of the two types of cancer cross at about 500 days.

Hence, we only considered a 2-sided alternative using the complete data set. The weight

functions (a) to (e) of Section 3 were used, and were compared with the tests of Aly,

Kochar and McKeague (1994). The test statistics and the corresponding p-values

Figure 1. Nelson-Aalen estimates of the CSHRs for the two types of cancer.

Table 4. Test statistics ( p-values) using different weight functions for the rats data.

n1/2A*n n1/2B*n n1/2C*n

(a) 2.0656(0.0388671) 2.4529(0.0283428) 4.5185(0.0000249)

(b) 4.6612(0.0000031) 4.6612(0.0000063) 5.0209(0.0000021)

(c) 	1.4994(0.1337626) 3.5473(0.0007782) 3.5473(0.0015564)

(d) 4.7409(0.0000021) 4.7409(0.0000043) 5.5396(0.0000001)

(e) 2.6433(0.0082097) 2.6433(0.0164195) 4.8243(0.0000056)

(f ) - 2.4316(0.0300615) 4.4380(0.0000363)
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(in parentheses) given in Table 4 suggest that the result is highly significant. By comparing

the p-values of the tests, it is noticed the tests based on the C*n are more robust while the

tests based on A*n and B*n may be more sensitive to the weight functions adopted. The

proposed classes of tests are highly flexible and when we do not have any idea of the order

of crossings of the two CSHRs, the tests based on C*n are recommended as they tend to

give more robust results.

5. Discussion

The non-studentized tests of Aly et al. (1994) are asymptotically distribution-free only when

the weight function ŜT (u–) ŜC (u–)
1/2 is used. Flexibility can be gained when different

weight functions are adopted, but studentization is necessary in order to retain the

asymptotic distribution-free properties. Simulation studies show that the studentized test

statistics have better performance than the non-studentized statistics of Aly et al. (1994) in

the sense that the finite sample distributions of the studentized statistics can be closely

approximated by their respective asymptotic distributions under the null hypothesis.

Empirically the studentized tests are almost unbiased even for moderate sample sizes,

irrespective of the choice of the weight functions and censoring proportion. Choices of

weight function have been proposed and discussed widely in the literature. However, the

choice of weight function should be based on the investigator’s desire to emphasize either

early or late departures between the CSHRs as the data from different clinical trials may have

different characteristics. For example, unexpected early or late occurrences of the event may

not be very informative and hence a weight function with lighter weight at both ends would

be adopted by the investigator. The supremum version of the tests, namely Bn and Cn would

be more sensitive to the cases where two CSHRs differ substantially for some range of t but

not necessarily elsewhere. Nevertheless, tests based on weight function w1(u) ¼ Ȳ(u) has

reasonable power in practice in most situations. Together with the classes of tests Cn or C*n,
which are less sensitive to the choice of weight functions, would be good tests to start with in

general when we have no information about the characteristics of the data.

Appendix

The proof of the following theorem follows from Aly, Kochar and McKeague (1994).

THEOREM: Let w be a locally bounded predictable non-negative weight function such that

nw2(u)/Ȳ(u) ! K(u) in probability for each u and
Rl
0

KðuÞdð�1 þ �2ÞðuÞ < l. Then

under H0

n1=2LnðtÞ !D W ð�ðtÞÞ

where {W(t), t � 0} is a standard Brownian motion and �2ðtÞ ¼
Rl
0

KðuÞdð�1 þ �2ÞðuÞ
which can be estimated consistently by Sn

2(t) of (5).
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It follows from this and from Gill (pp. 80-81, 1980) that under the conditions of the

above theorem and under H0,

ffiffiffi
n

p
LnðtÞ

SnðlÞ !D W ðtÞ:

The asymptotic null distributions as given by (6), (7) and (8) now follow easily from this

and the details given in Aly, Kochar and McKeague (1994).

Now we consider the asymptotic null distribution of the statistic
ffiffiffi
n

p
C*n ¼ffiffiffi

n
p

sup0�s<t<ljLnðtÞ 	 LnðsÞj=SnðlÞ. Since the statistic n1/2C*n converges in distribution

to C** ¼ sup0�s<t�1jW ðtÞ 	W ðsÞj with W being a standard Brownian motion. It is easy

to see that C** has the same distribution as the range of the standard Brownian motion

(||W	|| þ ||W + ||) where ||W	|| ¼ min(0, inf W(t)), ||W +|| ¼ max(0, sup W(t)). The range of

the standard Brownian motion was studied by Feller (1951) with density function given by

(Eq. (3.6) of Feller (1951) by setting t ¼ 1)

hðxÞ ¼ 8
Xl
k¼1

ð	1Þk	1
k2/ðkxÞ

where / is the density function of a standard normal variable Z. The 95% and 99%

quantiles are found to be 2.497 and 3.023, respectively.
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