
A Positive Dependence Paradox and Aging

Distributions

Kumar Joag-dev

University of Illinois, Urbana

Subhash Kochar

Indian Statistical Institute, New Delhi.

Abstract

Let X1, X2, ... be a sequence of independent random variables and let N be an

integer valued stopping variable independent of the Xi’s. We study the dependence

between N and SN =
∑N

i=1 Xi. It is shown that when Xi’s have logconcave densities,

N and SN are TP2 dependent. Where as P [SN ≥ x|N ≥ n] is always increasing in n,

P [N ≥ n|SN ≥ x] may not be increasing in x, in some cases. We prove in this note

that a sufficient condition for (1.1) to hold is that Xi’s have increasing failure rate

distributions.

Key words : Logconcave density, IFR distribution, positive dependence,

TP2 dependence, RTI property, shock models.
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1 Introduction

In reliability theory shock models have been used extensively. It is assumed that

the shocks arrive at a certain rate. Each shock inflicts certain damage to system.

The amounts of damage, Xi say, form a sequence of independent (but not necessarily

identically distributed) random variables and it is further assumed that they are in-

dependent of the number of shocks which itself is a random variable. Assuming that

the shocks are cumulative one can visualize situations where the failure of the system

indicates that the cumulative damage has exceeded certain threshold. We want to

make certain inferences regarding N , the number of shocks received by the system at

the time of its failure. In particular the following question is of primary interest.

Is

P [N ≥ n |
N∑
1

Xi ≥ w] increasing in w, for every n? (1.1)

Surprisingly, the answer to the above question is not always in the affirmative even

when the Xi’s are identically distributed. We prove in this note that a sufficient

condition for (1.1) to hold is that Xi’s have IFR (increasing failure rate) distributions.

If (1.1) holds, we say that N is right tail increasing in SN =
∑N

1 Xi (written as

RTI (N |SN)).

There are other situations where the same question has been considered. A partic-

ular application related to the modeling of a single ion channel was recently studied

by Milne, Edeson and Madsen (1986) in which the random variables Xi were expo-

nentially distributed while N was a geometric random variable. One of the objects

of their study was to examine the dependence between N and SN . Typically, in ap-

plications, the information about SN is more readily available while that about N is

not. Consequently the nature of the dependence relation between these two variables

becomes quite important for estimating the unknown N . By using explicit knowledge

about the distributions, Milne, Edeson and Madsen (1986) showed that E[N |SN ] is
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monotone increasing in SN . We will show that such monotonicity holds under more

general conditions on the distributions of Xi (exponential being a special case).

2 Preliminaries and Summary

Since most of the applications are typically for nonnegative random variables we will

make that assumption in what follows.

It may not be much of an exaggeration if one says that for every monotonicity result

about a family of distributions there is a TP2 function lurking around. A nonnegative

function f , defined on the plane is said to be a TP2 function if for every x1 < x2 and

y1 < y2, one has the inequality f(x1, y1)f(x2, y2) ≥ f(x2, y1)f(x1, y2).

If a nonnegative function f is logconcave, then it is easy to see that f(x−y), consid-

ered as a function of x and y is TP2. A family of distributions, usually parametrized,

whose members possess logconcave probability density functions, is referred to as PF2,

or Pólya Family of order 2. It is well-known that convolution of logconcave densities

is logconcave.

Let F denote a distribution function and let f be its density (with respect to

Lebesgue measure). The symbol F = 1−F is called the survival function correspond-

ing to F .

The condition that ln F be concave is weaker than requiring ln f to be concave.

Note that this weaker condition is equivalent to

f(x)

F (x)
is monotone increasing in x, (2.1)

or equivalently, for every t > 0,

P [X ≥ x|X ≥ x− t] =
F (x)

F (x− t)
is monotone decreasing in x. (2.2)

The class of distributions satisfying (2.1) plays a very important role and is known
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as the increasing failure rate (IFR) class. The condition (2.2) is useful when the

density does not exist.

Similarly, the aging of a component may be characterized by its survival rate.

Given that a component has failed at time x, the conditional probability that it might

have survived upto time x− t, is given by

P [X ≥ x− t|X ≤ x] =
F (x)− F (x− t)

F (x)
.

If this conditional probability is monotone decreasing in x for every t > 0, then it is

equivalent to saying that f(x)/F (x) is monotone decreasing in x, or F is decreasing

survival rate (DSR) distribution. It is clear that this in turn is equivalent to having

ln F concave.

It is well-known that the class of IFR distributions is closed under the operation of

convolution. The fact that the same is true for the class of DSR distributions follows

from a proof similar to that for the IFR class (see for example, Barlow and Proschan

(1981), Section 4.2, Chapter 4). Keilson and Sumita (1982) consider orderings of

distributions based on failure and survival rates. It is shown there that a distribution

with a logconcave probability density possesses IFR as well as DSR properties.

There are several notions of positive dependence between random variables and

there is a vast literature on this topic with important contributions by Lehmann

(1966), Esary and Proschan (1972), Barlow and Proschan (1981) and Shaked (1977),

amongst others. Perhaps the strongest notion of positive dependence between two

random variables X and Y is TP2 dependence. Two random variables X and Y are

TP2 dependent if their joint density f(x, y) is totally positive of order 2 in x and y.

Alternatively, it can be shown that X and Y are TP2 dependent if and only if

h(x|Y = y2)

h(x|Y = y1)
is monotone increasing in x, (2.3)

for every pair y2 > y1, where h(x|Y = y) denotes the conditional density of the

random variable X given Y = y. Note that this dependence relation between the
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random variables is symmetric in X and Y . Another interesting notion of positive

dependence is that of right tail increasing. We say that X is right tail increasing in

Y if P [X > x|Y > y] is nondecreasing in y for all x and denote this relationship

by RTI (X|Y ). We say that X is left tail decreasing in Y if P [X < x|Y < y] is

nonincreasing in x for all y, and denote this by LTD (X|Y ). It is well known that if

X and Y are TP2 dependent, then RTI (X|Y ) as well as LTD (X|Y ) (cf. Barlow and

Proschan (1981)). Also note that the later two notions of positive dependence are not

symmetric in X and Y .

It is easy to see that P [SN ≥ x|N ≥ n] is always nondecreasing in n for all x,

proving thereby that RTI (SN |N). However, we shall see in the next section that

RTI (N |SN) does not hold in general. We prove in the next section that if Xi’s have

logconcave densities, then N and SN are TP2 dependent and that a sufficient condition

for RTI (N |SN) is that Xi’s have IFR distributions.

3 Dependence Results

As before, let {Xi} be a sequence of independent random variables and N be an integer

valued nonnegative random variable independent of this sequence.

Theorem 3.1 Suppose that X1, X2, ... are independent random variables with logcon-

cave densities. Then N and SN are TP2 dependent.

Proof. It suffices to prove that

h(x|N = n + 1)

h(x|N = n)
is monotone increasing in x

for every positive integer n, where h denotes the conditional density of SN given N .

Due to the independence of the Xi and N the above monotonicity is equivalent to

showing
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g(n+1)(x)

g(n)(x)
is monotone increasing in x,

where g(n)(x) represents the density of the convolution X1 + X2 + · · ·+ Xn. It is well

known that the convolution of two logconcave densities is logconcave. Since we have

assumed that each Xi has logconcave density, the required result follows from Karlin

and Proschan (1960). Also see Theorem 1.C.5 of Shaked and Shanthikumar (1994) in

this connection.

The positive dependence described above is stronger than the one described by

either of the following two conditions .

P [N = n + 1|SN ≥ x]

P [N = n|SN ≥ x]
is monotone increasing in x, (3.1)

and
P [N = n + 1|SN ≤ x]

P [N = n|SN ≤ x]
is monotone increasing in x. (3.2)

The relations (3.1) and (3.2) state that the conditioning events {SN ≥ x} and

{SN ≤ x} create MLR orderings for the conditional distributions of N in x. Shaked

(1977) calls such orderings as DTP (1, 0) orderings. He has shown that (3.1) implies

RTI (N |SN) and similarly (3.2) implies LTD (N |SN).

Theorem 3.2 Suppose that X1, X2, ... are independent random variables each having

IFR distribution. Then (3.1) holds. If the distribution functions have DSR property,

then (3.2) holds.

Proof. Observe that

P [N = n + 1|SN ≥ x]

P [N = n|SN ≥ x]
=

P [N = n + 1, SN ≥ x]

P [N = n, SN ≥ x]

=
P [N = n + 1]P [Sn+1 ≥ x]

P [N = n]P [Sn ≥ x]
, (3.3)
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where the last equality follows from the independence of N and Xi’s. Hence the ratio

in (3.3), considered as a function of x, is seen to be proportional to

P [Sn+1 ≥ x]

P [Sn ≥ x]
,

which is nondecreasing in x if each Xi has IFR distribution (cf. Lynch, Mimmack

and Proschan (1987)).

The proof for (3.2) is similar.

In the next theorem we give a necessary and sufficient condition for N to be right

tail increasing in SN . We shall use the notation F
(j)

(x) to denote the survival function

of the convolution X1 + · · ·+ Xj.

Theorem 3.3 Let pj = P [N = j] and let r(j) denote the failure rate of Sj. Then a

necessary and sufficient condition that RTI(N |SN) is that

n−1∑
j=1

∞∑
i=n

pi pj[r
(j)(x)− r(i)(x)] ≥ 0, for all n ≥ 1 and for all x ≥ 0. (3.4)

Proof: By definition, RTI (N |SN) if and only if

P [N ≥ n|SN ≥ x] is nondecreasing in x

⇐⇒ P [SN ≥ x, N ≥ n]

P [SN ≥ x]
is nondecreasing in x

⇐⇒

∞∑
j=n

P [Sj ≥ x] P [N = j]

∞∑
j=1

P [Sj ≥ x] P [N = j]

is nondecreasing in x

⇐⇒

∞∑
j=n

pjF
(j)

(x)

∞∑
i=1

piF
(i)

(x)

is nondecreasing in x
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⇐⇒

n−1∑
j=1

pjF
(j)

(x)

∞∑
i=n

piF
(i)

(x)

is nonincreasing in x

On differentiating and after some simplification, we find that this will hold if and only

if
n−1∑
j=1

∞∑
i=n

pi pj[r
(j)(x)− r(i)(x)] ≥ 0, for all n ≥ 1 and for all x ≥ 0. (3.5)

It follows from Lynch, Mimmack and Proschan (1987) that if Xi ’s are independent

with IFR distributions, then for i ≥ j, the failure rate r(j)(x) of Sj is greater than or

equal to that of Si. Hence we have the following corollary.

Corollary 3.1 A sufficient condition for RTI (N |SN) is that Xi’s are independent

with IFR distributions.

Similar results can be obtained in the case of DSR random variables.

It is quite tempting to say that large values of SN should be associated with large

values of N regardless of the distributions of the nonnegative random variables Xi’s.

The following counter example shows that this is not the case.

Counter Example

To show that, in general,

P [N ≥ n|X1 + · · ·+ XN ≥ w] (3.6)

may not be monotonically increasing in w.

We take Xi’s to be identically distributed. First we give an example of a random

variable X such that

X1 + X2

hr

6> X1,
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where X1, X2 are i.i.d. copies of X.

Let X be a discrete r.v. with pdf

f(x) =



.7 for x = 1

.1 for x = 2

.2 for x = 3

0 otherwise .

The survival function of X is

F (x) =



0, 3 < x

.2, 2 < x ≤ 3

.3, 1 < x ≤ 2

1, x ≤ 1

The pdf of Y = X1 + X2 is

g(y) =



.49, y = 2

.14, y = 3

.29, y = 4

.04, y = 5

.04, y = 6

0, otherwise

with survival function

G(x) =



0, 6 < x

.04, 5 < x ≤ 6

.08, 4 < x ≤ 5

.37, 3 < x ≤ 4

.51, 2 < x ≤ 3

1, x ≤ 2
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Now

F (x)

G(x)
=



1, x ≤ 1

.3, 1 < x ≤ 2

.2
.51

= .39, 2 < x ≤ 3

0, x > 3

is not monotonically decreasing in x.

Let N be a binary random variable taking values {1, 2}. Then (3.6) can be written

as

P [N ≥ n|X1 + · · ·+ XN ≥ w]

=
P [X1 + · · ·+ XN ≥ w, N ≥ n]

P [X1 + · · ·+ XN ≥ w]

=

∞∑
j=n

P [X1 + · · ·+ Xj ≥ w]P [N = j]

∞∑
j=1

P [X1 + · · ·+ Xj ≥ w]P [N = j]

,

since Xi’s and N are independent.

=
P [X1 + X2 ≥ w]p2

P [X1 ≥ w]p1 + P [X1 + X2 ≥ w]p2

=

[
1 +

p1

p2

P [X1 ≥ w]

P [X1 + X2 ≥ w]

]−1

,

=

[
1 +

p1

p2

F (w)

G(w)

]−1

(3.7)

where p1 = P [N = 1], and p2 = P [N = 2].

It is easy to see from our above example that (3.7) is not monotonically increasing

in w.
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