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Abstract

Let X1, . . . , Xn be independent exponential random variables with Xi having hazard
rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ̃ = (

∏n
i=1 λi)

1/n, the geometric mean of the λis.
Let Xn:n = max{X1, . . . , Xn}. It is shown that Xn:n is greater than Yn:n according to
dispersive as well as hazard rate orderings. These results lead to a lower bound for the
variance of Xn:n and an upper bound on the hazard rate function of Xn:n in terms of
λ̃. These bounds are sharper than those obtained by Dykstra et al. ((1997), J. Statist.
Plann. Inference 65, 203–211), which are in terms of the arithmetic mean of the λis.
Furthermore, let X∗

1 , . . . , X
∗
n be another set of independent exponential random variables

with X∗
i

having hazard rate λ∗
i
, i = 1 . . . , n. It is proved that if (log λ1, · · · , log λn)

weakly majorizes (log λ∗
1, · · · , log λ∗

n), then Xn:n is stochastically greater than X∗
n:n.
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1. Introduction

Order statistics play an important role in reliability theory. The time to failure of a k-out-
of-n system of n components corresponds to the (n− k + 1)th order statistic. In particular, the
lifetime of a parallel system is the same as the largest order statistic. Series and parallel systems
are the simplest examples of coherent systems and they have been studied extensively in the
literature in the case where the components are independent and identically distributed. But in
real life, systems are usually made up of components with non-identically distributed lifetimes.
Since the distribution theory becomes quite complicated then, fewer results are available in the
general case.

The exponential distribution plays a very important role in statistics. Because of its non-
aging property, it has many nice properties and it often gives very convenient bounds on
survival probabilities and other characteristics of interest for systems with non-exponential
components. Pledger and Proschan (1971) studied the problem of stochastically comparing the
order statistics of non-identically distributed independent exponential random variables with
those corresponding to independent and identically distributed exponential random variables.
This topic has been followed up by many researchers including Proschan and Sethuraman
(1976), Boland et al. (1994), Dykstra et al. (1997), Boland et al. (1998), Bon and Paltanea
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(1999), and Kochar and Ma (1999), among others. In this note we obtain some new results on
stochastic comparisons of parallel systems.

Let us denote the density function, the distribution function, the survival function, and the
hazard rate of a random variable X by fX, FX, FX and rX, respectively. A random variable
X is said to be stochastically larger than another random variable Y (denoted by X ≥st Y ) if
FX(x) ≥ FY (x) for all x. A stronger notion of stochastic dominance is that of hazard rate
ordering. We say that X is larger than Y in hazard rate ordering (denoted by X ≥hr Y ) if
FX(x)/FY (x) is non-decreasing in x. A random variable X is said to be more dispersed than
another random variable Y (denoted by X ≥disp Y ) if F−1

X (β) − F−1
X (α) ≥ F−1

Y (β) − F−1
Y (α)

whenever 0 < α ≤ β < 1, where F−1
X and F−1

Y are the right continuous inverses of the
distribution functions FX and FY , respectively. For more details regarding these stochastic
orders, see Chapter 1 and Section 2.B of Shaked and Shanthikumar (1994).

Let {x(1) ≤ x(2) ≤ . . . ≤ x(n)} denote the increasing arrangement of the components of the
vector x = (x1, x2, . . . , xn). The vector x is said to majorize the vector y (written x �m y)
if

∑j
i=1 x(i) ≤ ∑j

i=1 y(i) for j = 1, . . . , n − 1 and
∑n

i=1 x(i) = ∑n
i=1 y(i). Functions that

preserve the majorization ordering are called Schur convex functions. See Marshall and Olkin
(1979, Chapter 3) for properties and more details. The vector x is said to majorize the vector
y weakly (written x �w y) if

∑j
i=1 x(i) ≤ ∑j

i=1 y(i) for j = 1, . . . , n.
Recently Bon and Paltanea (1999) have considered a new pre-order on R, which they call

a p-larger order. A vector x in R is said to be p-larger than another vector y also in R

(written x �p y) if log(x) �w log(y), where log(x) denotes the vector of the logarithms of the
coordinates of x. It is known that x �m y =⇒ (g(x1), . . . , g(xn)) �w (g(y1), . . . , g(yn)) for
all concave functions g (cf. Marshal and Olkin (1979), p. 115). Since log is a concave function,
it follows that for x, y ∈ R, if x �m y then x �p y. The converse is, however, not true. For
example, (0.2, 1, 5) �p (1, 2, 3) but majorization does not hold between these two vectors.

We shall denote by Zi:n the ith order statistic of a set of n random variables Z1, . . . , Zn.
Let X1, . . . , Xn be independent exponential random variables with Xi having hazard rate λi ,
i = 1, . . . , n and let Y1 . . . , Yn be a random sample of size n from an exponential distribution
with hazard rate λ = ∑n

i=1 λi/n. Dykstra et al. (1997) proved that Xn:n ≥disp Yn:n and
Xn:n ≥hr Yn:n. These results give a lower bound for the variance of Xn:n and an upper bound
on the hazard rate of Xn:n in terms of those of Yn:n. In the next section we improve upon these
bounds by replacing λ with λ̃ = (

∏n
i=1 λi)

1/n, the geometric mean of the λs.
Let X∗

1, . . . , X
∗
n be another set of independent exponential random variables with Zi having

hazard rate λ∗
i . Pledger and Proschan (1971) showed that if λ �m λ∗ then Xi:n ≥st X∗

i:n,
i = 1, . . . , n. We prove in Section 2 that for i = n the same result continues to hold under the
p-larger ordering.

2. Main results

To prove the main theorem in this section we shall need the following lemma whose proof
can be easily verified.

Lemma 2.1. For z > 0, the functions g(z) = (1 − e−z)/z and ψ(z) = z2e−z/(1 − e−z)2 are
both decreasing.

Theorem 2.1. Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi , i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ̃ = (

∏n
i=1 λi)

1/n. Then Xn:n ≥disp Yn:n and Xn:n ≥hr
Yn:n.
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Proof. Note that

Xn:n ≥disp Yn:n ⇔ fXn:n(x) ≤ fYn:n(F
−1
Yn:nFXn:n(x)) ∀x ≥ 0. (2.1)

One can see after some simplifications that (2.1) is equivalent to

n∑
i=1

λi

1 − e−λix
− n

n∏
i=1

(
λi

1 − e−λix

)1/n

≤
n∑

i=1

λi − n

n∏
i=1

(λi)
1/n ∀x ≥ 0. (2.2)

To prove that (2.2) holds for all λi > 0, i = 1, . . . , n, it is sufficient to show that the left-hand
side of (2.2), denoted by h(x), is non-decreasing in x since then, for x ≥ 0,

h(x) ≤ lim
t→+∞ h(t) =

n∑
i=1

λi − n

n∏
i=1

(λi)
1/n,

the right-hand side of (2.2).
The derivative of h(x) is

h′(x) =
( n∑

i=1

λie−λix

1 − e−λix

)( n∏
i=1

λi

1 − e−λix

)1/n

−
n∑

i=1

λ2
i e−λix

(1 − e−λix)2

≥
( n∑

i=1

λie−λix

1 − e−λix

)(
n∑n

i=1 (1 − e−λix)/λi

)
−

n∑
i=1

λ2
i e−λix

(1 − e−λix)2 ,

since the geometric mean of a set of numbers is always greater than or equal to its harmonic
mean. Hence h′(x) will be non-negative if we can prove that for zi > 0, i = 1, . . . , n,

n

n∑
i=1

zie−zi

1 − e−zi
≥

( n∑
i=1

z2
i e−zi

(1 − e−zi )2

)( n∑
i=1

1 − e−zi

zi

)
. (2.3)

The inequality in (2.3) follows immediately from Čebyšev’s inequality (Mitrinović (1970,
Theorem 1, p. 36)), Lemma 2.1, and by writing

zie−zi

1 − e−zi
=

(
z2
i e−zi

(1 − e−zi )2

)(
1 − e−zi

zi

)
.

This proves that h(x) is non-decreasing in x and hence the result.
The proof of Xn:n ≥hr Yn:n is identical to that of Theorem 2.1 (b) of Dykstra et al. (1997)

and is omitted.

Corollary 2.1. Under the conditions of Theorem 2.1: (a) the hazard rate rXn:n of Xn:n satisfies

rXn:n(x; λ) ≤ nλ̃(1 − exp(−λ̃x))n−1 exp(−λ̃x)

1 − (1 − exp(−λ̃x))n
;

(b)

var(Xn:n; λ) ≥ 1

λ̃2

n∑
i=1

1

(n − i + 1)2 .
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Figure 1: Graphs of hazard rates of X3:3 (λ1 = (1, 2, 3)).
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Figure 2: Graphs of hazard rates of X3:3 (λ2 = (0.2, 2, 3.8)).

The new bounds given by Corollary 2.1 are better than those obtained by Dykstra et al.
(1997), since rYn:n is a non-decreasing function of λ̃ and the fact that the geometric mean of the
λis, is smaller than their arithmetic mean.

In Figures 1 and 2, we plot the hazard rates of parallel systems of three exponential
components along with the upper bounds as given by Dykstra et al. (1997) and the ones given
by Corollary 2.1(a). The vector of parameters in Figure 1 is λ1 = (1, 2, 3) and that in Figure 2
is λ2 = (0.2, 2, 3.8). Note that λ2 �m λ1. It appears from these figures that the improvements
on the bounds are relatively more if the λis are more dispersed in the sense of majorization.
This fact follows because the geometric mean is Schur concave whereas the arithmetic mean
is Schur constant and the hazard rate of a parallel system of i.i.d. exponential components with
common parameter λ̃ is increasing in λ̃.

To prove our next theorem, we shall need the following result of Marshall and Olkin
(1997, p. 59).
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Lemma 2.2. A real valued function φ on the set A ⊂ R
n satisfies

x �w y on A =⇒ φ(x) ≥ φ(y)

if and only if φ is decreasing and Schur convex on A.

Theorem 2.2. Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be another set of independent exponential random
variables with Yi having hazard rate λ∗

i , i = 1, . . . , n. Then

λ �p λ∗ =⇒ Xn:n ≥st Yn:n.

Proof. The survival function of Xn:n can be written as

FXn:n(x) = 1 −
n∏

i=1

(1 − e− exp(ai )x), (2.4)

where ai = log λi, i = 1, . . . , n.
Using Lemma 2.2, we find that it is enough to show that the function given by (2.4) is Schur

convex and decreasing in the ais. Now

∂FXn:n
∂ai

= −
n∏

i=1

(1 − e− exp(ai )x)

(
xeai e− exp(ai )x

1 − e− exp(ai )x

)
.

To prove Schur convexity we have to show that, for i �= j ,

(ai − aj )

(
∂FXn:n
∂ai

− ∂FXn:n
∂aj

)
≥ 0,

(cf. Marshall and Olkin (1979, p. 57)). That is,

x(ai −aj )

( n∏
i=1

(1−e− exp(ai )x)

)(
eaj e− exp(aj )x

1 − e− exp(aj )x
− eai e− exp(ai )x

1 − e− exp(ai )x

)
≥ 0, for i �= j . (2.5)

It is easy to see that the function be−bx/(1 − e−bx) is decreasing in b. Replacing b with eai , it
follows that the function eai e− exp(ai )x/(1−e− exp(ai )x) is also decreasing in ai for i = 1, . . . , n.
This proves (2.5). The partial derivative of FXn:n with respect to ai is negative, which in turn
implies that the survival function of Xn:n is decreasing in ai for i = 1, . . . , n. This completes
the proof.

Remark 2.1. Theorem 2.2 strengthens a similar result of Pledger and Proschan (1971) who
proved that in the context of Theorem 2.2,

λ �m λ∗ =⇒ Xn:n ≥st Yn:n. (2.6)

Remark 2.2. Boland et al. (1994) showed with the help of a counterexample that, for n > 2,
(2.6) cannot be strengthened from stochastic ordering to hazard rate ordering. Since majoriza-
tion implies p-larger ordering, it follows that, in general, Theorem 2.2 can not be extended to
hazard rate ordering.
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Remark 2.3. Bon and Paltanea (1999) have recently obtained similar results for convolutions
of independent exponential random variables.

As shown in the next example, the results of Theorem 2.2 cannot be extended to other order
statistics.

Example 2.1. Let X1, X2, X3 be independent exponential random variables with λ =
(0.1, 1, 7.9) and let Y1, Y2, Y3 be independent exponential random with λ∗ = (1, 2, 5). It
is easy to see that λ �p λ∗. Then X1:3 and Y1:3 have exponential distributions with respective
hazard rates 9 and 8, which implies that Y1:3 ≥st X1:3.
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