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obtained so far are for the Weibull and the Gamma distributions.

Keywords Hazard rate ordering; Majorization; p-larger ordering; Proportional
hazards family; Schur functions.

AMS Subject Classification Primary 60K10; Secondary 60E15.

1. Introduction

Let X1� � � � � Xn be n random variables and let X�i� denote their ith order statistic,
i = 1� � � � � n. Order statistics arise naturally at number of places in applications.
A k-out-of-n system of n components functions if at least k of the n components
function. The time of a k-out-of-n system of n components with lifetimes X1� � � � � Xn

corresponds to the �n− k+ 1�th order statistic. Thus, the study of lifetimes of k-out-
of-n systems is equivalent to studying the stochastic properties of order statistics.
In particular, a 1-out-of-n system corresponds to a parallel system and an n-out-of-n
system corresponds to a series system. A lot of work has been done in the literature
on different aspects of order statistics when the observations are independently and
identically distributed (i.i.d.). In many practical situations, like in reliability theory,
however, the observations are not necessarily i.i.d. Because of the complicated
nature of the problem, not much work has been done for the non i.i.d. case. Some
interesting partial ordering results on order statistics when the parent observations
are independent with proportional hazard rates have been obtained by Pledger and
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1442 Khaledi and Kochar

Proschan (1971), Proschan and Sethuraman (1976), Boland et al. (1994), Dykstra
et al. (1997), and Khaledi and Kochar (2000, 2005), among others. Also see Belzunce
et al. (2001) and Boland et al. (2002) for general results on order statistics. In this
article we review some recently obtained results on stochastic comparisons of order
statistics when the parent observations are independent but with different scale
parameters.

Now we introduce notations and recall some definitions. Throughout this
article, increasing means non decreasing and decreasing means non increasing; and we
shall be assuming that all distributions under study are absolutely continuous. Let X
and Y be univariate random variables with distribution functions F and G, survival
functions �F and �G, density functions f and g, and hazard rates rF (=f/�F ) and rG
(=g/�G), respectively. Let lX �lY � and uX �uY � be the left and the right endpoints of
the support of X�Y�. The random variable X is said to be stochastically smaller than
Y (denoted by X ≤st Y ) if �F�x� ≤ �G�x� for all x. This is equivalent to saying that
Eg�X� ≤ Eg�Y� for any increasing function g for which expectations exist. X is said
to be smaller than Y in hazard rate ordering (denoted by X ≤hr Y ) if �G�x�/�F�x�
is increasing in x ∈ �−�� max�uX� uY ��. In case the hazard rates exist, it is easy to
see that X ≤hr Y , if and only if, rG�x� ≤ rF �x� for every x. Note that hazard rate
ordering implies stochastic ordering.

A random vector X = �X1� � � � � Xn� is said to be smaller than another random
vector Y = �Y1� � � � � Yn� according to multivariate stochastic ordering (denoted by

X
st� Y) if h�X� ≤st h�Y� for all increasing functions h. It is easy to see that

multivariate stochastic ordering implies component-wise stochastic ordering. For
more details on stochastic orderings, see Chs. 1 and 4 of Shaked and Shanthikumar
(1994) and Müller and Stoyan (2002).

One of the basic tools in establishing various inequalities in statistics and
probability is the notion of majorization. Let �x�1� ≤ · · · ≤ x�n�� denote the
increasing arrangement of the components of a vector x = �x1� � � � � xn�. A vector
x is said to majorize another vector y (written x

m� y) if
∑j

i=1 x�i� ≤
∑j

i=1 y�i� for
j = 1� � � � � n− 1 and

∑n
i=1 x�i� =

∑n
i=1 y�i�. Functions that preserve the majorization

ordering are called Schur-convex functions. The vector x is said to majorize the
vector y weakly (written x

w� y) if
∑j

i=1 x�i� ≤
∑j

i=1 y�i� for j = 1� � � � � n.
Bon and Paltanea (1999) have considered a pre-order on �+n

, which they call
as a p-larger order.

Definition 1.1. A vector x in �+n
is said to be p-larger than another vector y also

in �+n
(written x

p� y) if
∏j

i=1 x�i� ≤
∏j

i=1 y�i�� j = 1� � � � � n.

Let log�x� denote the vector of logarithms of the coordinates of x. It is easy to
verify that

x
p� y ⇔ log�x�

w� log�y�� (1.1)

It is known that x
m� y �⇒ �g�x1�� � � � � g�xn��

w� �g�y1�� � � � � g�yn�� for all concave
functions g (cf. Marshall and Olkin, 1979, p. 115). From this and (1.1), it follows
that when x� y ∈ �+

x
m� y �⇒ x

p� y�
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Stochastic Orderings of Order Statistics 1443

The converse is, however, not true. For example, the vectors �0�2� 1� 5�
p� �1� 2� 3�

but majorization does not hold between these two vectors. Marshall and Olkin
(1979) provide extensive and comprehensive details on the theory of majorization
and its applications in statistics.

The proof of the main result in this article uses the following result.

Theorem 1.1 (Marshall and Olkin, 1979, p. 57). Let I ⊂ � be an open interval and
let � � In → � be continuously differentiable. Necessary and sufficient conditions for �
to be Schur-convex on In are: � is symmetric on In and for all i �= j,

�zi − zj�	��i��z�− ��j��z�
 ≥ 0 for all z ∈ In�

where ��i��z� denotes the partial derivative of � with respect to its ith argument.

In Sec. 2, we stochastically compare order statistics corresponding to two sets
of independent Weibull as well as gamma random variables with a common shape
parameter but when their scale parameters majorize each other. In Sec. 3, we obtain
bounds on the hazard rate and the variance of the lifetime of a parallel system with
different independent Weibull distributions.

2. Stochastic Comparisons of Order Statistics from Weibull
and Gamma Distributions

Weibull and gamma distributions are perhaps the most commonly used distributions
in reliability theory and life testing. The probability density function of a Weibull
random variable with shape parameter ��>0� and scale parameter ��>0� is

f�x� �� �� = �x�−1��e−��x�� � x > 0

and the probability density function of a gamma random variable ��>0� and scale
parameter ��>0� is

g�x� �� �� = ��x�−1e−�x/���� x > 0�

We shall use the notations W��� �� to denote a Weibull random variable and G��� ��
to denote a gamma random variable with shape parameter � and scale parameter �.
These are very flexible families of distributions, having decreasing, constant and
increasing failure rates when 0 < � < 1� � = 1� and � > 1, respectively.

In this section we study the stochastic properties of order statistics associated
with independent random variables X1� � � � � Xn when

(a) Xi ∼ W��� �i� for i = 1� � � � � n,
(b) Xi ∼ G��� �i� for i = 1� � � � � n.

It is of interest to investigate the effect on the survival function, the hazard rate
function, and other characteristics of the time to failure of a system consisting
of such components when we switch the vector ��1� � � � � �n� to another vector
say, ��∗1� � � � � �

∗
n�. An assumption often made in reliability models is that the

components have lifetimes with proportional hazards. Let Xi denote the lifetime of
the ith component of a reliability system with survival function �Fi�t�, i= 1� � � � � n.
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1444 Khaledi and Kochar

Then they have proportional hazard rates (PHR) if there exist constants �1� � � � � �n
and a (cumulative hazard) function R�t� ≥ 0 such that �Fi�t� = e−�iR�t� for i =
1� � � � � n. If X1� � � � � Xn are independent random variables such that Xi ∼ W��� �i�
for i = 1� � � � � n, then they belong to the PHR family with R�t� = t� and a new
parameter vector ��1� � � � � �n�, where �i = ��i , i = 1� � � � � n, but not with the original
parameters.

Pledger and Proschan (1971) proved the following result for the PHR model
which contains exponential distributions as a special case.

Theorem 2.1. Let �X1� � � � � Xn� and �X∗
1 � � � � � X

∗
n� be two random vectors of

independent lifetimes with proportional hazards and with ��1� � � � � �n� and ��∗1� � � � �
∗
n�

as the constants of proportionality, respectively. Then

�
m� �∗ �⇒ X�i� ≥st X

∗
�i�� i = 1� � � � � n� (2.1)

Proschan and Sethuraman (1976) extended this result from componentwise
stochastic ordering to multivariate stochastic ordering. That is, under the
assumptions of Theorem 2.1, they proved that

�X�1�� � � � � X�n��
st� �X∗

�1�� � � � � X
∗
�n��� (2.2)

It follows from Theorem 2.1 that in the case of Weibull distributions with
a common shape parameter � and with scale parameters as ��1� � � � � �n� and
��∗1� � � � �

∗
n�, (2.1) and (2.2) hold if ���1� � � � � �

�
n�

m� ��∗1
�� � � � � �∗n

��. Khaledi and Kochar
(2005) and Sun and Zhang (2005), respectively, proved that a similar result also
holds in Weibull and gamma cases when the two original vectors of scale parameters
majorize each other and 0 < � ≤ 1.

Theorem 2.2. Let �X1� � � � � Xn� and �X∗
1 � � � � � X

∗
n� be two independent random vectors

with

(A) Xi ∼ W��� �i� and X∗
i ∼ W��� �∗i �, i = 1� � � � � n or

(B) Xi ∼ G��� �i� and X∗
i ∼ G��� �∗i �, i = 1� � � � � n.

Then for 0 < � ≤ 1�

�
m� �∗ ⇒ �X�1�� � � � � X�n��

st� �X∗
�1�� � � � � X

∗
�n���

Proof. (A) First we prove the result for n = 2. According to Theorem 5.4.13 of
Barlow and Proschan (1975), in order to prove the required result, it is sufficient to
prove that for 0 < � ≤ 1,

(a) X�1� ≥st X
∗
�1�

(b) for x ≤ x′, �X�2� �X�1� = x� ≤st �X�2� �X�1� = x′� and
(c) �X�2� �X�1� = x� ≥st �X

∗
�2� �X∗

�1� = x�.

Proving (a) is equivalent to proving that �FX�1�
�x�, the survival function of X�1� is

Schur-convex in ��1� �2�. To prove it, we use Theorem 1.1. The partial derivative of
�FX�1�

�x� with respect to �i is

��FX�1�
�x�

��i
= −���−1

i x�e−x����1+��2�� i = 1� 2�
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Stochastic Orderings of Order Statistics 1445

This leads to

��1 − �2�

(
��FX�1�

��1
− ��FX�2�

��2

)
≥ 0�

thus proving (a).
The conditional survival function of X�2� �X�1� = x�

�FX�2� �X�1�=x�z� =
��1e

−�x�1�
�−�z�2�

� + ��2e
−�x�2�

�−�z�1�
�

���1 + ��2��e
−�x�1�

�−�x�2�
� �

= ��1
��1 + ��2

e−�z�2�
�+�x�2�

� + ��2
��1 + ��2

e−�z�1�
�+�x�1�

�

is increasing in x, thus proving (b). Proving (c) is equivalent to proving that
�FX�2��X�1�=x�z� is Schur convex in ��1� �2�� Its partial derivatives with respect to �1 and
�2, respectively, are

�

��1
�FX�2��X�1�=x�z� =

���−1
1 ���1 + ��2�− ��2�−1

1

���1 + ��2�
2

e−��2�z
�−x��

− ���−1
1 ��2

���1 + ��2�
2
e−��1�z

�−x�� − �z� − x�����−1
1 e−��1�z

�−x�� ��2
��1 + ��2

�

and

�

��2
�FX�2��X�1�=x�z� =

���−1
2 ���1 + ��2�− ��2�−1

2

���1 + ��2�
2

e−��1�z
�−x��

− ���−1
2 ��1

���1 + ��2�
2
e−��2�z

�−x�� − �z� − x�����−1
2 e−��2�z

�−x�� ��1
��1 + ��2

�

Now the difference between these two derivatives is

�

��1
�FX�2��X�1�=x�z�−

�

��2
�FX�2��X�1�=x�z�

= ���−1
1 ��−1

2

���1 + ��2�
2
�e−��2�z

�−x����1 + �2 + �1�z
� − x�����1 + ��2��

− e�
�
1�z

�−x����1 + �2 + �2�z
� − x�����1 + ��2����

If �1 > �2� then e−��2�z
�−x�� ≥ e−��1�z

�−x��� since z > x� If �1 < �2� then the above
inequality is reversed. That is,

��1 − �2�

(
�

��1
�FX�2��X�1�=x�z�−

�

��2
�FX�2��X�1�=x�z�

)
≥ 0�

The proof of part (c) again follows from Theorem 1.1. This completes the proof in
the case of n = 2. The proof for n > 2 follows from this and using similar kind of
arguments as used in Theorem 3.4 of Proschan and Sethuraman (1976).
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1446 Khaledi and Kochar

(B) Using similar kind of arguments as used to prove (A), Sun and Zhang
(2005) proved this result.

For comparing two series systems with independent Weibull components,
Khaledi and Kochar (2005) proved the following stronger result.

Theorem 2.3. Let X1� � � � � Xn be independent random variables with Xi ∼ W��� �i),
i = 1� � � � � n. Let X∗

1 � � � � � X
∗
n be another set of independent random variables with

X∗
i ∼ W��� �∗i �, i = 1� � � � � n. Then �

m� �∗ implies that X�1� ≥hr X
∗
�1� for 0 < � ≤ 1 and

X�1� ≤hr X
∗
�1� for � > 1.

Proof. The hazard rate of X�1� is

rX�1�
�x� �1� � � � �n� =

n∑
i=1

�x�−1�i
��

The function g��� = �x�−1��i is concave (convex) in � for 0 < � ≤ 1 (� ≥ 1). It
follows from Proposition C.1. of Marshall and Olkin (1979, p. 64), that

∑n
i=1 g��i�

is Schur concave (convex). This completes the proof. �

Khaledi and Kochar (2005) proved that for the largest order statistic, the
conclusion of Theorem 2.1 holds under the weaker p-larger ordering. This result is
formally stated below.

Theorem 2.4. Let X1� � � � � Xn be independent random variables with Xi having survival
function �F�i�x�, i = 1� � � � � n. Let X∗

1 � � � � � X
∗
n be another set of independent random

variables with X∗
i having survival function �F�∗i �x�, i = 1� � � � � n. Then

�
p� �∗ �⇒ X�n� ≥st X

∗
�n��

Since for any � > 0,

��1� � � � � �n�
p� ��∗1� � � � � �

∗
n� ⇔ ���1� � � � � �

�
n�

p� ��∗1
�� � � � � �∗n

���

the above theorem leads to the following corollary.

Corollary 2.1. Let X1� � � � � Xn be independent random variables with Xi ∼ W��� �i),
i = 1� � � � � n. Let X∗

1 � � � � � X
∗
n be another set of independent random variables with X∗

i ∼
W��� �∗i �, i = 1� � � � � n. Then for any � > 0,

�
p� �∗ �⇒ X�n� ≥st X

∗
�n��

Khaledi and Kochar (2000) had earlier proved a special case of the above
corollary when � = 1. It will be interesting to see whether the above result can be
extended to other order statistics. Boland et al. (1994) have proved that in case �= 1,
such a result does not hold for parallel systems with more than two components.

Sun and Zhang (2005) also proved the following result for gamma random
variables.



D
ow

nl
oa

de
d 

B
y:

 [M
cM

as
te

r U
ni

ve
rs

ity
] A

t: 
14

:1
9 

21
 S

ep
te

m
be

r 2
00

7 

Stochastic Orderings of Order Statistics 1447

Theorem 2.5. Let �X1� � � � � Xn� and �X∗
1 � � � � � X

∗
n� be two independent random vectors

with Xi ∼ G��� �i� and X∗
i ∼ G��� �∗i �, i = 1� � � � � n. Then for � ≥ 1� �

m� �∗ implies
X�1� ≤st X

∗
�1� and X�n� ≥st X

∗
�n��

3. Comparisons with the i.i.d. Case

Dykstra et al. (1997) and Khaledi and Kochar (2000) studied the problem of
stochastically comparing the largest order statistic of a set of n independent and
non-identically distributed exponential random variables with that corresponding
to a set of n independent and identically distributed exponential random variables.
In particular, Khaledi and Kochar (2000) proved the following result.

Theorem 3.1. Let X1� � � � � Xn be independent exponential random variables with Xi

having hazard rate �i, i = 1� � � � � n. Let Y1� � � � � Yn be a random sample of size n from
an exponential distribution with common hazard rate �̃ = �

∏n
i=1 �i�

1/n. Then

(a) X�n� ≥hr Y�n��
(b) X�n� ≥disp Y�n�.

In Theorem 3.3, we extend this result from exponential to the PHR model.
To prove this, we need the following result due to Rojo and He (1991).

Theorem 3.2. Let X and Y be two random variables such that X ≤st Y . Then X ≤disp Y
implies that ��X� ≤disp ��Y� where � is a non decreasing convex function.

Theorem 3.3. Let X1� � � � � Xn be independent random variables with Xi having survival
function �F�i�x�� i = 1� � � � � n. Let Y1� � � � � Yn be a random sample of size n from a
distribution with survival function �F �̃�x�, where �̃ = �

∏n
i=1 �i�

1/n. Then

(a) X�n� ≥hr Y�n� � and
(b) if F is DFR, then X�n� ≥disp Y�n�.

Proof. (a) Let H�x� = − log�F�x� denote the cumulative hazard of F . Let Zi =
H�Xi�, i = 1� � � � � n and Wi = H�Yi�, i = 1� � � � � n. Since the Xi’s follow the PHR
model, it is easy to show that Zi is exponential with hazard rate �i� i = 1� � � � � n.
Similarly, Wi is exponential with hazard rate �̃� i = 1� � � � � n. It follows from
Theorem 3.1(a) that Z�n� ≥hr W�n�. Using this fact (since H−1, the right inverse of H ,
is non decreasing), it is easy to show that H−1�Z�n�� ≥hr H

−1�W�n�� from which part
(a) follows.

(b) Theorem 3.1(a) and (b), respectively, imply that Z�n� ≥st W�n� and Z�n� ≥disp

W�n�. The function H−1�x� is convex, since F is DFR, and is non decreasing. Using
these observations, it follows from Theorem 3.2 that H−1�Z�n�� ≥disp H

−1�W�n��
which is equivalent to X�n� ≥disp Y�n�. �

We show with the help of the next example that the DFR condition in the above
theorem cannot be dispensed with.

Example 3.1. Let X1 and X2 be independent random variable with Xi having
survival function �Fi�x� = �1− x��i , 0 ≤ x ≤ 1, i = 1� 2. Let Y1 and Y2 be independent
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1448 Khaledi and Kochar

random variables with common survival function �G�x� = �1− x���1�2�
1/2

, 0 ≤ x ≤ 1.
Let �1 = 1 and �2 = 4. Under this setting, it is easy to find that var�X�2�� = 43

720 <
11
225 = var�Y�2��, from which it follows that part (b) of Theorem 3.3 may not hold for
the case when F , the baseline distribution, is not DFR. Note that in this example F
being uniform distribution on �0� 1� is IFR.

Corollary 3.1. Let X1� � � � � Xn be independent random variables with Xi ∼ W��� �i),
i = 1� � � � � n. Let Y1� � � � � Yn be a random sample of size n from a W��� �̃� distribution,
where �̃ = �

∏n
i=1 �i�

1/n. Then

(a) for any � > 0, X�n� ≥hr Y�n�
(b) for 0 < � ≤ 1, X�n� ≥disp Y�n�.

Proof. The proof follows from Theorem 3.3 since for any � > 0, the geometric
mean of ��1� � � � � �

�
n is �̃� and the fact that the Weibull distribution is DFR when

0 < � ≤ 1. �

It will be interesting to investigate whether results parallel to Corollaries 2.1 and
3.1 hold in the case of gamma and other distributions.
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