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Abstract

In this paper we review some of the results obtained recently in the area of stochas-

tic comparisons of order statistics and sample spacings. We consider the cases when

the parent observations are identically as well as non-identically distributed. But

most of the time we shall be assuming that the observations are independent. The

case of independent exponentials with unequal scale parameters is discussed in detail.
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1 Introduction

The simplest and the most common way of comparing two random variables is through

their means and variances. It may happen that in some cases the median ofX is larger

than that of Y , while the mean of X is smaller than the mean of Y . However, this

confusion will not arise if the random variables are stochastically ordered. Similarly,

the same may happen if one would like to compare the variability of X with that

of Y based only on numerical measures like standard deviation etc. Besides, these

characteristics of distributions might not exist in some cases. In most cases one

can express various forms of knowledge about the underlying distributions in terms

of their survival functions, hazard rate functions, mean residual functions, quantile

functions and other suitable functions of probability distributions. These methods

are much more informative than those based only on few numerical characteristics

of distributions. Comparisons of random variables based on such functions usually

establish partial orders among them. We call them as stochastic orders.

Stochastic models are usually sufficiently complex in various fields of statistics,

particularly in reliability theory. Obtaining bounds and approximations for their

characteristics is of practical importance. That is, the approximation of a stochastic

model either by a simpler model or by a model with simple constituent components

might lead to convenient bounds and approximations for some particular and desired

characteristics of the model. The study of changes in the properties of a model, as

the constituent components vary, is also of great interest. Accordingly, since the

stochastic components of models involve random variables, the topic of stochastic

orders among random variables plays an important role in these areas.

Order statistics and spacings are of great interest in many areas of statistics and

they have received a lot of attention from many researchers. Let X1, . . . , Xn be n

random variables. The ith order statistic, the ith smallest of Xi’s, is denoted by
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Xi:n. A k-out-of-n system of n components functions if at least k of n components

function. The time of a k-out-of-n system of n components with life times X1, . . . , Xn

corresponds to the (n−k+1)th order statistic. Thus, the study of lifetimes of k-out-

of-n systems is equivalent to the study of the stochastic properties of order statistics.

Spacings, the differences between successive order statistics, and their functions are

also important in statistics, in general, and in particular in the context of life testing

and reliability models. Lot of work has been done in the literature on different aspects

of order statistics and spacings. For a glimpse of this, see the books by David (1981),

and Arnold, Balakrishnan and Nagaraja (1992); and two volumes of papers on this

topic by Balakrishnan and Rao (1998 a and b). But most of this work has been

confined to the case when the observations are i.i.d. In many practical situations,

like in reliability theory, the observations are not necessarily i.i.d. Because of the

complicated nature of the problem, not much work has been done for the non i.i.d.

case. Some references for this case are Sen (1970), David (1981, p.22), Shaked and

Tong (1984), Bapat and Beg (1989), Boland et al. (1996), Kochar (1996), and Nappo

and Spizzichino (1998), among others.

Some interesting partial ordering results on order statistics and spacings from

independent but non-identically random variables have been obtained by Pledger

and Proschan (1971), Proschan and Sethuraman (1976), Bapat and Kochar (1994),

Boland, El-Neweihi, and Proschan (1994 ), Kochar and Kirmani (1995), Kochar and

Korwar (1996), Kochar and Rojo (1996), Dykstra, Kochar, and Rojo (1997), Kochar

and Ma (1999), Bon and Paltanea (1999), Kochar (1999), Khaledi and Kochar (1999),

Khaledi and Kochar (2000 a,b,c), and Khaledi and Kochar (2001).

In this chapter, we discuss some newly obtained results on stochastic comparisons

of order statistics and spacings. Kochar (1998) and Boland, Shaked and Shanthiku-

mar (1998) have given comprehensive reviews on this topic upto 1998. In Section

2, we introduce the required notation and definitions. Section 3 and 4 are devoted
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to stochastic comparisons of order statistics in one-sample and two-sample problems,

respectively. In Sections 5, we discuss the stochastic ordering among spacings in

one-sample problem and two sample problem. Section 6 is devoted to stochastic

properties of sample range Throughout this chapter increasing means nondecreasing

and decreasing means nonincreasing; and we shall be assuming that all distributions

under study are absolutely continuous.

2 Definitions

Let X and Y be univariate random variables with distribution functions F and G,

survival functions F and G, density functions f and g; and hazard rates rF (= f/F )

and rG (= g/G), respectively. Let lX (lY ) and uX (uY ) be the left and the right

endpoints of the support of X (Y ).

Stochastic orderings

Definition 2.1 X is said to be stochastically smaller than Y (denoted by X ≤st Y )

if F (x) ≤ G(x) for all x.

This is equivalent to saying that Eg(X) ≤ Eg(Y ) for any increasing function g for

which expectations exist.

Definition 2.2 X is said to be smaller than Y in hazard rate ordering (denoted by

X ≤hr Y ) if G(x)/F (x) is increasing in x ∈ (−∞, max(uX , uY )).

It is worth noting that X ≤hr Y is equivalent to the inequalities

P [X − t > x|X > t] ≤ P [Y − t > x|Y > t], for all x ≥ 0 and t.

In other words, the conditional distributions, given that the random variables are at

least of a certain size, are all stochastically ordered (in the standard sense) in the
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same direction. Thus, if X and Y represent the survival times of different models of

an appliance that satisfy this ordering, one model is better (in the sense of stochastic

ordering) when the appliances are new, the same appliance is better when both are one

month old, and in fact is better no matter how much time has elapsed. It is clearly

useful to know when this strong type of stochastic ordering holds since quantities

judgements are then easy to make. In case the hazard rates exist, it is easy to see

that X ≤hr Y , if and only if, rG(x) ≤ rF (x) for every x. The hazard rate ordering is

also known as uniform stochastic ordering in the literature.

Definition 2.3 X is said to be smaller than Y in likelihood ratio ordering (denoted

by X ≤lr Y ) if g(x)/f(x) is increasing in x ∈ (lX , uX) ∪ (lY , uY ).

When the supports of X and Y have a common left end-point, we have the following

chain of implications among the above stochastic orders :

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (2.1)

Definition 2.4 The random vector X = (X1, . . . , Xn) is smaller than the random

vector Y = (Y1, . . . , Yn) in the multivariate stochastic order (denoted by X
st
� Y) if

h(X) ≤st h(Y) for all increasing functions h.

It is easy to see that multivariate stochastic ordering implies component-wise usual

stochastic ordering. For more details on stochastic orderings, see Chapters 1 and 4

of Shaked and Shanthikumar (1994).

One of the basic criteria for comparing variability in probability distributions is

that of dispersive ordering. Let F−1 andG−1 be the right continuous inverses (quantile

functions) of F and G, respectively. We say that X is less dispersed than Y (denoted

by X ≤disp Y ) if F−1(β)− F−1(α) ≤ G−1(β)−G−1(α), for all 0 ≤ α ≤ β ≤ 1. From

this one can easily obtain that

X ≤disp Y ⇐⇒ g(x) ≤ f
(
F−1G(x)

)
∀ x, (2.2)
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when the random variables X and Y admit densities. A consequence of X ≤disp Y

is that |X1 − X2| ≤st |Y1 − Y2| and which in turn implies var(X) ≤ var(Y ) as well

as E[|X1 −X2|] ≤ E[|Y1 − Y2|], where X1, X2 (Y1, Y2) are two independent copies of

X (Y ). For details, see Saunders and Moran (1978), Lewis and Thompson (1981),

Deshpande and Kochar (1983), Bagai and Kochar (1986), Bartoszewicz (1986, 1987);

and Section 2.B of Shaked and Shanthikumar (1994).

Notions of Majorization and related orderings

One of the basic tools in establishing various inequalities in statistics and proba-

bility is the notion of majorization.

Let {x(1) ≤ x(2) ≤ . . . ≤ x(n)} denote the increasing arrangement of the compo-

nents of the vector x = (x1, x2, . . . , xn).

Definition 2.5 The vector x is said to majorize the vector y (written x
m
� y) if∑j

i=1 x(i) ≤
∑j

i=1 y(i) for j = 1, . . . , n− 1 and
∑n

i=1 x(i) =
∑n

i=1 y(i).

Functions that preserve the majorization ordering are called Schur-convex functions.

The vector x is said to majorize the vector y weakly (written x
w
� y) if

∑j
i=1 x(i) ≤∑j

i=1 y(i) for j = 1, . . . , n. Marshall and Olkin (1979) provides extensive and compre-

hensive details on the theory of majorization and its applications in statistics.

Recently Bon and Paltanea (1999) have considered a pre-order on IR+n
, which

they call as a p-larger order.

Definition 2.6 A vector x in IR+n
is said to be p-larger than another vector y also

in IR+n
(written x

p

� y) if
∏j

i=1 x(i) ≤
∏j

i=1 y(i), j = 1, . . . , n.

Let log(x) denote the vector of logarithms of the coordinates of x. It is easy to

verify that

x
p

� y ⇔ log(x)
w
� log(y). (2.3)
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It is known that x
m
� y =⇒ (g(x1), . . . , g(xn))

w
� (g(y1), . . . , g(yn)) for all concave

functions g (cf. Marshal and Olkin, 1979, p. 115). From this and (2.3), it follows

that when x,y ∈ IR+n

x
m
� y =⇒ x

p

� y.

The converse is, however, not true. For example, the vectors (0.2, 1, 5)
p

� (1, 2, 3) but

majorization does not hold between these two vectors.

Notions of Aging

Let X be a random variable with distribution function F and let Xt denote a

random variable with the same distribution as that of X − t|X > t. We will use the

following notions of aging in this article.

(a) X is said to have an increasing failure rate (denoted by IFR) distribution if

Xt ≤st Xt′ , for t > t′. This is equivalent to saying that F (x+ t)/F (t) decreasing

in t for x > 0. It is easy to see that in case the random variableX admits density,

F is IFR if and only if, the hazard rate rF (t) = f(t)/F (t) is increasing in t.

(b) X is said to have a decreasing failure rate (denoted by DFR) distribution if

Xt ≥st Xt′ , for t > t′. This is equivalent to F (x + t)/F (t) increasing in t for

x > 0.

Next theorem due to Bagai and Kochar (1986) and Bartoszewicz (1987) establishes

a connection between dispersive ordering and hazard rate ordering.

Theorem 2.1 Let X and Y be random variables with distribution function F and

G, respectively. Then,

(a) X ≤hr Y and F or G being DFR implies X ≤disp Y ;

(b) X ≤disp Y and F or G being IFR implies X ≤hr Y .
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3 Stochastic Comparisons of Order Statistics in

one-sample problem

Let X1, . . . , Xn be a set of independent random variables. It is easy to see that

Xi:n ≤st Xj:n, for all i < j. Boland, El-Neweihi and Proschan (1994) extended

this result from usual stochastic order to hazard rate order. Using the definition of

likelihood ratio ordering, it is not hard to prove that Xi:n ≤lr Xj:n for i < j. Shaked

and Shanthikumar (1994) considered the problem of comparing order statistics from

samples with possibly unequal sample sizes. They showed that if random variables

Xi’s are iid, then Xn:n ≤lr Xn+1:n+1 and X1:n ≥lr X1:n+1. Raqab and Amin (1996)

strengthened this result and proved that Xi:n ≤lr Xj:m, whenever i ≤ j and n − i ≥

m − j. Using implications (2.1), we get, for i ≤ j and n − i ≥ m − j, Xi:n ≤hr

Xj:m which in turn implies that Xi:n ≤st Xj:m. Removing the identically distributed

assumption, it is interesting to investigate the above stochastic inequalities among

order statistics. Boland, El-Neweihi and Proschan (1994) showed that if random

variables are independent and Xk ≤hr Xn+1, k = 1, . . . , n, then Xi−1:n ≤hr Xi:n+1,

i = 1, . . . , n + 1. They also proved that if Xi’s are independent and Xn+1 ≤hr Xk,

k = 2, . . . , n, then Xi:n ≥hr Xi:n+1, i = 1, . . . , n. The reader may be wondering

whether likelihood ratio ordering among order statistics holds for the case when Xi’s

are independent but not necessarily identically distributed. Assuming X1 ≤lr X2 ≤lr

. . . ≤lr Xn, Bapat an Kochar (1994) proved that Xi:n ≤lr Xj:n, i < j.

We end this section by discussing some results on dispersive ordering of order

statistics. David and Groenveld (1982) proved that if Xi’s are iid random variables

with a common DFR distribution, then var(Xi:n) ≤ var(Xj:n), for i < j. Kochar

(1996) strengthened this result to prove that under the same conditions, Xi:n ≤disp

Xj:n, i < j. In Theorem 3.2 below, due to Khaledi and Kochar (2000 a), this result
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has been further extended. It is proved that if Xi’s are iid with DFR distribution,

then Xi:n ≤disp Xj:m, whenever i ≤ j and n − i ≥ m − j. We will find the following

result useful in proving it.

Theorem 3.1 (Saunders (1984)). The random variable X satisfies X ≤disp X+Y.

for any random variable Y independent of X if and only if X has a log-concave

density.

Using Theorem 3.1, first the result is proved for exponential distribution.

lemma 3.1 Let Xi:n be the ith order statistic of a random sample of size n from an

exponential distribution. Then

Xi:n ≤disp Xj:m for i ≤ j and n− i ≥ m− j. (3.1)

Proof : Suppose we have two independent random samples,X1, . . . , Xn andX
′
1, . . . , X

′
m

of sizes n and m from an exponential distribution with failure rate λ. The ith order

statistic Xi:n can be written as a convolutions of the sample spacings as

Xi:n = (Xi:n −Xi−1:n) + · · ·+ (X2:n −X1:n) +X1:n

dist
=

i∑
k=1

En−i+k (3.2)

where for k = 1, . . . , i, En−i+k is an exponential random variable with failure rate

(n− i+ k)λ. It is a well known fact that En−i+k’s are independent. Similarly we can

express X
′
j:m as

X
′

j:m
dist
=

j∑
k=1

E
′

m−j+k (3.3)

where again for k = 1, . . . , j, E
′
m−j+k is an exponential random variable with failure

rate (m−j+k)λ and E
′
m−j+k’s are independent. It is easy to verify that En−i+1 ≤disp

E
′
m−j+1 for n− i ≥ m− j.
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Since the class of distributions with log-concave densities is closed under convo-

lutions (cf. Dharmadhiakri and Joag-dev (1988), p. 17), it follows from the repeated

applications of Theorem 3.1 that

i∑
k=1

En−i+k ≤disp

i∑
k=1

E
′

m−j+k. (3.4)

Again since
∑j

k=i+1E
′
m−j+k, being the sum of independent exponential random vari-

ables has a log-concave density and since it is independent of
∑i

k=1E
′
n−i+k, it follows

from Theorem 3.1 that the R.H.S of (3.4) is less dispersed than
∑j

k=1E
′
m−j+k for i ≤ j

. That is,

Xi:n
dist
=

i∑
k=1

En−i+k ≤disp

j∑
k=1

E
′

m−j+k
dist
= X

′

j:m.

Since Xj:m and X
′
j:m are stochastically equivalent, (3.1) follows from this.

The proof of the next lemma can be found in Bartoszewicz (1987).

lemma 3.2 Let φ : R+ → R+ be a function such that φ(0) = 0 and φ(x) − x is

increasing. Then for every convex and strictly increasing function ψ : R+ → R+ the

function ψφψ−1(x)− x is increasing.

In the next theorem we extend Lemma 3.1 to the case when F is a DFR distribution.

Theorem 3.2 Let Xi:n be the ith order statistic of a random sample of size n from

a DFR distribution F . Then

Xi:n ≤disp Xj:m for i ≤ j and n− i ≥ m− j.

Proof : The distribution function of Xj:m is Fj:m(x) = Bj:mF (x), where Bj:m is the

distribution function of the beta distribution with parameters (j,m− j + 1).

LetG denote the distribution function of a unit mean exponential random variable.

Then Hj:m(x) = Bj:mG(x) is the distribution function of the jth order statistic in a
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random sample of size m from a unit mean exponential distribution. We can express

Fj:m as

Fj:m(x) = Bj:mGG
−1F (x)

= Hj:mG
−1F (x). (3.5)

To prove the required result, we have to show that for i ≤ j and n− i ≥ m− j,

F−1
j:mFi:n(x)− x is increasing in x

⇔ F−1GH−1
j:mHi:nG

−1F (x)− x is increasing in x. (3.6)

By Lemma 3.1, H−1
j:mHi:n(x) − x is increasing in x for i ≤ j and n − i ≥ m − j.

Also the function ψ(x) = F−1G(x) is strictly increasing and it is convex if F is DFR.

The required result now follows from Lemma 3.2.

Remark: A consequence of Theorem 3.2 is that if we have random samples from a

DFR distribution, then

Xi:n+1 ≤disp Xi:n ≤disp Xi+1:n+1, for i = 1, . . . , n.

4 Stochastic Comparisons of Order Statistics in

two-sample problem

LetX1, . . . , Xn be a set of independent random variables and Y1, . . . , Yn be another set

of independent random variables. Ross (1983) proved that if Xi ≤st Yi, i = 1, . . . , n,

then (X1, . . . , Xn) ≤st (Y1, . . . , Yn). A consequence of this result is that Xi:n ≤st

Yi:n for i = 1, . . . , n. Lynch, Mimmack and Proschan (1987) generalized this result

from stochastic ordering to hazard rate ordering. They showed that if Xi ≤hr Yj,
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i, j ∈ {1, . . . , n}, then Xi:n ≤hr Yi:n, i = 1, . . . , n. A similar result for likelihood ratio

ordering has been proved by Chan, Proshcan and Sethuraman (1991). They proved

that if Xi ≤lr Yj, i, j ∈ {1, . . . , n}, then Xi:n ≤lr Yi:n, i = 1, . . . , n. Lillo, Nanda and

Shaked (2000) strengthened this result to the case when the number of Xi’s and Yi’s

are possibly different.

Theorem 4.1 Let X1, . . . , Xn be independent random variables and Y1, . . . , Ym be

another set of independent random variables, all having absolutely continuous dis-

tributions. Then Xi ≤lr Yj for all i, j implies Xi:n ≤lr Yj:m whenever i ≤ j and

n− i ≥ m− j.

In the next theorem we establish dispersive ordering between order statistics when

the random samples are drawn from different distributions.

Theorem 4.2 Let X1, . . . , Xn be a random sample of size n from a continuous dis-

tribution F and let Y1 . . . , Ym be a random sample of size m from another continuous

distribution G. If either F or G is DFR, then

X ≤disp Y ⇒ Xi:n ≤disp Yj:m for i ≤ j and n− i ≥ m− j. (4.1)

Proof: Let F be a DFR distribution. The proof for the case when G is DFR is

similar. By Theorem 3.2, Xi:n ≤disp Xj:m for i ≤ j and n− i ≥ m− j. Bartoszewicz

(1986) proved that if X ≤disp Y then Xj:m ≤disp Yj:m. Combining these we get the

required result.

Since the property X ≤hr Y together with the condition that either F or G is

DFR implies that X ≤disp Y (Theorem 2.1), we get the following result from the

above theorem.

Corollary 4.1 Let X1, . . . , Xn be a random sample of size n from a continuous

distribution F and Y1 . . . , Ym be a random sample of size m from another continuous
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distribution G. If either F or G is DFR, then

X ≤hr Y ⇒ Xi:n ≤disp Yj:m.

Stochastic comparisons of order statistics from heterogeneous populations

An assumption often made in reliability models is that the n components have

lifetimes with proportional hazards. Let Xi denote the lifetime of the ith component

of a reliability system with survival function F i(t), i = 1, . . . , n. Then they have

proportional hazard rates (PHR) if there exist constants λ1, . . . , λn and a (cumulative

hazard) function R(t) ≥ 0 such that F i(t) = e−λiR(t) for i = 1, . . . , n.Clearly then the

hazard rate of Xi is ri(t) = λiR
′(t) (assuming it exists). An example of such a situa-

tion is when the components have independent exponential lifetimes with respective

hazard rates λ1, . . . , λn. Many researchers have investigated the effect on the survival

function, the hazard rate function and other characteristics of the time to failure of

this system when we switch the vector (λ1, . . . , λn) to another vector say (λ∗1, . . . , λ
∗
n).

Pledger and Proschan (1971), for the first time, studied this problem and proved the

following interesting result among many other results.

Theorem 4.3 Let (X1, . . . , Xn) and (X∗
1 , . . . , X

∗
n) be two random vectors of indepen-

dent lifetimes with proportional hazards with λ1, . . . , λn and λ∗1, . . . λ
∗
n as the constants

of proportionality. Suppose that

λ
m
� λ∗.

Then

Xi:n ≥st X
∗
i:n, i = 1, . . . , n. (4.2)

Proshcan and Sethuraman (1976) generalized this result from component wise stochas-

tic ordering to multivariate stochastic ordering. That is, under the same assumptions

of Theorem 4.3, they showed that

(X1:n, . . . , Xn:n) ≥st (X∗
1:n, . . . , X

∗
n:n).
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Boland, El-Neweihi and Proschan (1994 ) proved that for n = 2 the above result

can be extended from stochastic ordering to hazard rate ordering. They also showed

with the help of a counterexample that for n > 2, (4.2) cannot be strengthened from

stochastic ordering to hazard rate ordering.

Dykstra, Kochar and Rojo (1997) studied the problem of stochastically comparing

the largest order statistic of a set of n independent and non-identically distributed

exponential random variables with that corresponding to a set of n independent and

identically distributed exponential random variables. Let X1, . . . , Xn be independent

exponential random variables with Xi having hazard rate λi, for i = 1, . . . , n. Let

Y1, . . . , Yn be a random sample of size n from an exponential distribution with common

hazard rate λ =
∑n

i=1λi/n, the arithmetic mean of the λi’s. They proved that Xn:n is

greater than Yn:n according to dispersive as well as hazard rate orderings. In Theorem

4.4 below we prove that similar results hold if instead, we assume that for i = 1, . . . , n,

the random variable Yi has exponential distribution with hazard rate λ̃ = (
∏n

i=1 λi)
1/n,

the geometric mean of the λi’s. To prove dispersive ordering between Xn:n and Yn:n

in Theorem 4.4 we shall need the following lemma.

lemma 4.1 For z > 0, the functions g(z) = (1−e−z)/z and h(z) = (z2e−z)/(1−e−z)2

are both decreasing.

Proof : The numerator of the derivative of g(z) is k(z) = (1 + z)e−z − 1, which is

a decreasing function of z. This implies that k(z) < 0 for z > 0, since k(0) = 0.

It is easy to see after some simplifications that

d

dz
(log(h(z))) =

2− 2e−z − z − ze−z

z(1− e−z)
. (4.3)

Using the fact that k(z) is negative, one can verify that the numerator of (4.3) is

decreasing, from which the required result follows.
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Theorem 4.4 Let X1, . . . , Xn be independent exponential random variables with Xi

having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from

an exponential distribution with common hazard rate λ̃ = (
∏n

i=1 λi)
1/n. Then

(a) Xn:n ≥disp Yn:n ;

(b) Xn:n ≥hr Yn:n .

Proof : (a) The distribution function of Xn:n is

FXn:n(x) =
n∏

i=1

(
1− e−λix

)
,

with density function as

fXn:n(x) =
n∑

i=1

λie
−λix

1− e−λix

n∏
i=1

(
1− e−λix

)
. (4.4)

Replacing λi with λ̃ in (4.4), we see that the distribution function and the density

function of Yn:n are

FYn:n(x) =
(
1− e−λ̃x

)n
and fYn:n(x) = nλ̃e−λ̃x

(
1− e−λ̃x

)n−1
,

respectively. It is easy to verify that F−1
Yn:n

(x) = − 1
λ̃

log
(
1− x1/n

)
. Using these

observations, it follows that

fYn:n

(
F−1

Yn:n
FXn:n(x)

)
= nλ̃

(
1−

n∏
i=1

(1− e−λix)1/n

)(
n∏

i=1

(1− e−λix)1/n

)n−1

. (4.5)

To prove that Xn:n ≥disp Yn:n, it follows from relation (2.2) that it is sufficient to

show that

fXn:n(x) ≤ fYn:n

(
F−1

Yn:n
FXn:n(x)

)
∀x > 0. (4.6)

Using expressions (4.4) and (4.5) in (4.6), one can see after some simplifications

that (4.6) is equivalent to

n∑
i=1

λi

1− e−λix
− n

n∏
i=1

(
λi

1− e−λix
)1/n ≤

n∑
i=1

λi − n
n∏

i=1

(λi)
1/n . (4.7)
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To prove that (4.7) holds for all λi > 0, i = 1, . . . , n, it is sufficient to show that the

L.H.S. of (4.7) (denoted by h(x)) is increasing in x since for x > 0,

h(x) ≤ limx→+∞h(x) =
n∑

i=1

λi − n
n∏

i=1

(λi)
1/n ,

the right hand side of (4.7).

The derivative of h(x) is

h
′
(x) =

(
n∑

i=1

λie
−λix

1− e−λix

)(
n∏

i=1

λi

1− e−λix

)1/n

−
n∑

i=1

λ2
i e
−λix

(1− e−λix)2

≥
(

n∑
i=1

λie
−λix

1− e−λix

) n∑n
i=1

1−e−λix

λi

− n∑
i=1

λ2
i e
−λix

(1− e−λix)2
,

since the geometric mean of a set of numbers is always greater than or equal to its

harmonic mean. Now h
′
(x) ≥ 0 if and only if,

n
n∑

i=1

λie
−λix

1− e−λix
≥
(

n∑
i=1

λ2
i e
−λix

(1− e−λix)2

)(
n∑

i=1

1− e−λix

λi

)
. (4.8)

Multiplying both sides of (4.8) by x(> 0) and replacing the λix with zi for i = 1, . . . , n,

it is enough to prove that

n
n∑

i=1

zie
−zi

1− e−zi
≥
(

n∑
i=1

z2
i e
−zi

(1− e−zi)2

)(
n∑

i=1

1− e−zi

zi

)
. (4.9)

The inequality in (4.9) follows immediately from Čebyšev’s inequality (Theorem 1, p.

36 of Mitrinović, 1970), Lemma 4.1 and by writing

zie
−zi

1− e−zi
=

(
z2

i e
−zi

(1− e−zi)2

)(
1− e−zi

zi

)
.

This proves that h(x) is increasing in x and hence the result.

(b) It follows from Theorem 5.8 of Barlow and Proschan (1981) that Yn:n is IFR.

Using this and part (a), the required result follows from Theorem 2.1.

From the above results, we get the following convenient bounds on the hazard

rate and the variance of Xn:n.
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Corollary 4.2 Under the conditions of Theorem 4.4,

(a) the hazard rate rXn:n of Xn:n satisfies

rXn:n(x; λ) ≤
nλ̃

(
1− exp(−λ̃x)

)n−1
exp(−λ̃x)

1−
(
1− exp(−λ̃x)

)n ,

(b)

var(Xn:n; λ) ≥ 1

λ̃2

n∑
i=1

1

(n− i+ 1)2
.

Dykstra, Kochar and Rojo (1997) proved a result similar to Theorem 4.4 by as-

suming that the random variables Yi’s are exponential with common hazard rate

λ =
∑n

i=1 λi/n and obtained bounds on the hazard rate and the variance of Xn:n

in terms of λ. The new bounds given in Corollary 4.2 are better because rYn:n and

var(Yn:n) are increasing and decreasing function of λ̃, respectively, and the fact that

the geometric mean of λi’s is smaller than their arithmetic mean.
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Figure 4.1. Graphs of hazard rates of X3:3
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Figure 4.2. Graphs of hazard rates of X3:3

In Figures 4.1. and 4.2. above, we plot the hazard rates of parallel systems of three

exponential components along with the upper bounds as given by Dykstra, Kochar

and Rojo (1997) and the one’s given by Corollary 4.2 (a). The vector of parameters

in Figure 4.1 is λ1 = (1, 2, 3) and that in Figure 4.2 is λ2 = (0.2, 2, 3.8). Note that

λ2

m
� λ1. It appears from these figures that the improvements in the bounds are

relatively more if λi’s are more dispersed in the sense of majorization. This is true
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because the geometric mean is Schur-concave and the hazard rate of a parallel system

of i.i.d. exponential components with a common parameter λ̃ is increasing in λ̃.

Let F denote the survival function of a nonnegative random variable X with

hazard rate h. According to the PHR model, the random variables X1, . . . , Xn are

independent with Xi having survival function F
λi(.), so that its hazard rate is λih(.),

i = 1, . . . , n.

Next, we extend Theorem 4.4 from exponential to PHR models. To prove this we

need the following theorem due to Rojo and He (1991).

Theorem 4.5 Let X and Y be two random variables such that X ≤st Y . Then

X ≤disp Y implies that γ(X) ≤disp γ(Y ) where γ is a nondecreasing convex function.

Theorem 4.6 Let X1, . . . , Xn be independent random variables with Xi having sur-

vival function F
λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from

a distribution with survival function F
λ̃
(x), where λ̃ = (

∏n
i=1 λi)

1/n. Then

(a) Xn:n ≥hr Yn:n ; and

(b) if F is DFR, then Xn:n ≥disp Yn:n .

Proof : (a)

Let H(x) = − logF (x) denote the cumulative hazard of F . Let Zi = H(Xi),

i = 1, . . . , n and Wi = H(Yi), i = 1, . . . , n. Since Xi’s follow the PHR model, then

it is easy to show that Zi is exponential with hazard rate λi, i = 1, . . . , n. Similarly,

Wi is exponential with hazard rate λ̃, i = 1, . . . , n. Theorem 4.4 (b) implies that

Zn:n ≥hr Wn:n. Using this fact, (since H−1, the right inverse of H, is nondecreasing)

it is easy to show that H−1(Zn:n) ≥hr H
−1(Wn:n) from which the part (a) follows.

(b) Theorem 4.4 (a) and (b), respectively, imply that Zn:n ≥disp Wn:n and Zn:n ≥st

Wn:n. The function H−1(x) is convex, since F is DFR, and is nondecreasing. Using
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these observations, it follows from Theorem 4.5 that H−1(Zn:n) ≥disp H−1(Wn:n)

which is equivalent to Xn:n ≥disp Yn:n.

In Theorem 4.9 below we prove that for the largest order statistic, the conclusion

of Theorem 4.3 holds under the weaker p-larger ordering. The proof of this theorem

hinges on the following results.

Theorem 4.7 ( Marshall and Olkin, 1979, p. 57) Let I ⊂ IR be an open interval

and let φ : In → IR be continuously differentiable. Necessary and sufficient conditions

for φ to be Schur-convex on In are φ is symmetric on In and for all i 6= j,

(zi − zj)[φ(i)(zi)− φ(j)(zj)] ≥ 0 for all z ∈ In,

where φ(i)(z) denotes the partial derivative of φ with respect to its ith argument.

Theorem 4.8 (Marshall and Olkin, 1979, p. 59) A real-valued function φ on the

set A ⊂ IRn satisfies

x
w
� y on A =⇒ φ(x) ≥ φ(y)

if and only if φ is decreasing and Schur-convex on A.

lemma 4.2 The function ψ : IR+n → IR satisfies

x
p

� y =⇒ ψ(x) ≥ ψ(y) (4.10)

if and only if,

(i) ψ(ea1 , . . . , ean) is Schur-convex in (a1, . . . , an)

(ii) ψ(ea1 , . . . , ean) is decreasing in ai, for i = 1, . . . , n,

where ai = log xi, for i = 1, . . . , n.
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Proof : Using relation (2.3), we see that (4.10) is equivalent to

a
w
� b =⇒ ψ(ea1 , . . . , ean) ≥ ψ(eb1 , . . . , ebn), (4.11)

where ai = log xi and bi = log yi, for i = 1, . . . , n.

Taking φ(a1, . . . , an) = ψ(ea1 , . . . , ean) in Theorem 4.8, we get the required result.

Now we are ready to prove the next theorem.

Theorem 4.9 Let X1, . . . , Xn be independent random variables with Xi having sur-

vival function F
λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be another set of random variables

with Yi having survival function F
λ∗i (x), i = 1, . . . , n. Then

λ
p

� λ∗ =⇒ Xn:n ≥st Yn:n.

Proof : The survival function of Xn:n can be written as

FXn:n(x) = 1−
n∏

i=1

(1− e−eaiH(x)), (4.12)

where ai = log λi, i = 1, . . . , n and H(x) = − logF (x).

Using Lemma 4.2, we find that it is enough to show that the function FXn:n given

by (4.12) is Schur-convex and decreasing in ai’s. To prove its Schur-convexity, it

follows from Theorem 4.7 that, we have to show that for i 6= j, (ai − aj)(
∂F Xn:n

∂ai
−

∂F Xn:n

∂aj
) ≥ 0. That is,

H(x)(ai − aj)

(
n∏

i=1

(1− e−eaiH(x))

)(
eaje−eaj H(x)

1− e−eaj H(x)
− eaie−eaiH(x)

1− e−eaiH(x)

)
≥ 0, for i 6= j

(4.13)

since
∂FXn:n

∂ai

= −
n∏

i=1

(1− e−eaiH(x))

(
H(x)eaie−eaiH(x)

1− e−eaiH(x)

)
.

It is easy to see that the function be−bH(x)/(1−e−bH(x)) is decreasing in b, for each fixed

x > 0. Replacing b with eai , it follows that the function eaie−eaiH(x)/(1 − e−eaiH(x))
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is also decreasing in ai for i = 1, . . . , n. This proves that (4.13) holds. The partial

derivative of FXn:n with respect to ai is negative and which in turn implies that the

survival function of Xn:n is decreasing in ai for i = 1, . . . , n. This completes the proof.

The following result due to Khaledi and Kochar (2000 b) is a special case of

Theorem 4.9.

Corollary 4.3 Let X1, . . . , Xn be independent exponential random variables with

Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be another set of independent

exponential random variables with Yi having hazard rate λ∗i , i = 1, . . . , n. Then

λ
p

� λ∗ =⇒ Xn:n ≥st Yn:n.

Boland, El-Neweihi and Proschan (1994 ) pointed out that for n > 2, (4.2) cannot

be strengthened from stochastic ordering to hazard rate ordering. Since majorization

implies p-larger ordering, it follows that, in general, Theorem 4.9 cannot be strength-

ened to hazard rate ordering.

As shown in the next example, a result similar to Theorem 4.9 may not hold for

other order statistics.

Example 4.1 : Let X1, X2, X3 be independent exponential random variables

with λ = (0.1, 1, 7.9) and Y1, Y2, Y3 be independent exponential random variables with

λ∗ = (1, 2, 5). It is easy to see that λ
p

� λ∗. The X1:3 and Y1:3 have exponential

distributions with respective hazard rates 9 and 8 and which implies that Y1:3 ≥st X1:3.

5 Stochastic Comparisons of Sample Spacings

Let X1, . . . , Xn be n random variables. The random variables Di:n = Xi:n−Xi−1:n and

D∗
i:n = (n − i + 1)Di:n, i = 1, . . . , n, with X0:n ≡ 0, are respectively called spacings

and normalized spacings. They are of great interest in various areas of statistics,
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in particular, in characterizations of distributions, goodness-of-fit tests, life testing

and reliability models. In the reliability context they correspond to times elapsed

between successive failures of components in a system. It is well known that the

normalized spacings of a random sample from an exponential distribution are i.i.d.

random variables having the same exponential distribution. Such a characterization

may not hold for other distributions and much of the reliability theory deals with

this aspect of spacings. In this section we review stochastic properties of spacings

when original random variables are i.i.d. as well as when they are independent but

not identically distributed.

Many authors have studied the stochastic properties of spacings from restricted

families of distributions. Barlow and Proschan (1966) proved that if X1, . . . , Xn is

a random sample from a DFR distribution, then the successive normalized spacings

are stochastically increasing. Kochar and Kirmani (1995) strengthened this result

from stochastic ordering to hazard rate ordering, that is, for i = 1, . . . , n− 1,

D∗
i:n ≤hr D

∗
i+1:n. (5.1)

The corresponding problem when the random variables are not identically distributed,

has also been studied by many researchers, including Pledger and Proschan (1971),

Shaked and Tong (1984), Kochar and Korwar (1996), Kochar and Rojo (1996), Nappo

and Spizzichino (1998), among others. For a review of this topic see Kochar (1998).

Here we give some new results obtained recently by the authors.

Kochar and Korwar (1996) conjectured that a result similar to (5.1) holds in the

case when X1, . . . , Xn are independent exponential random variables with Xi having

hazard rate λi, for i = 1, . . . , n. Khaledi and Kochar (2001) proved this conjecture

when random variables Xi’s follow a single outlier model with parameters λ and λ∗,

that is when λ1 = . . . = λn−1 = λ and λn = λ∗. To prove this we shall be using the

following results.
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The joint density function of the spacings when λi’s are possibly different is given

by (cf. Kochar and Korwar, 1996),

fD1:n,...,Dn:n(x1, . . . , xn) =
∑
(r)

∏n
i=1 λi∏n

i=1

∑n
j=i λ(rj)

n∏
i=1

(
n∑

j=i

λ(rj))exp{−xi

n∑
j=i

λ(rj)}, (5.2)

for xi ≥ 0, i = 1, . . . , n, where (r) = (r1, . . . , rn) is a permutation of (1, . . . , n) and

λ(i) = λi. It is a mixture of products of exponential random variables. From (5.2) it

is easy to find that the joint pdf of (Di:n, Dj:n) for 1 ≤ i < j ≤ n, is

fDi:n,Dj:n
(x, y) =

∑
(r)

∏n
i=1 λi∏n

i=1

∑n
j=i λ(rj)

(5.3)

× (
n∑

m=i

λ(rm))exp{−x
n∑

m=i

λ(rm)}(
n∑

m=j

λ(rm))exp{−y
n∑

m=j

λ(rm)},

for x, y ≥ 0. Now (5.2) can be written as

fD1:n,...,Dn:n(x1, . . . , xn) =
n∑

θ=1

(n− 1)!λ∗(λ)n−1∏θ
i=1((n− i)λ+ λ∗)

∏n
i=θ+1(n− i+ 1)λ

×
θ∏

i=1

((n− i)λ+ λ∗)e−((n−i)λ+λ∗)xi

n∏
i=θ+1

(n− i+ 1)λe−(n−i+1)λxi , (5.4)

which can be further expressed as

fD1:n,...,Dn:n(x1, . . . , xn) =
n∑

θ=1

h(θ)
θ∏

i=1

α∗i e
−α∗i xi

n∏
i=θ+1

αie
−αixi ,

where αi = (n − i + 1)λ, α∗i = (n − i)λ + λ∗, i = 1, . . . , n and using αi and α∗i , the

function h is given by

h(θ) =
(n− 1)!λn−1λ∗∏θ
i=1 α

∗
i

∏n
i=θ+1 αi

, θ = 1, . . . , n. (5.5)

The marginal density function of Di:n can be expressed as

fDi:n
(x) = Hiαie

−αix +H iα
∗
i e
−α∗i x, (5.6)
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where

Hi =
i−1∑
θ=1

h(θ), i = 2, . . . , n and H1 = 0. (5.7)

Thus, the density function of Di:n is a mixture of two exponential random variables

with parameters αi and α∗i . Now we prove the main theorem.

Theorem 5.1 Let X1, . . . , Xn follow the single-outlier exponential model with pa-

rameters λ and λ∗. Then

D∗
i+1:n ≥hr D

∗
i:n, i = 1, . . . , n− 1.

Proof : We prove the result when λ∗ > λ. The proof for the case λ∗ < λ follows

using the same kind of arguments. From (5.6) we find that the survival function of

D∗
i:n is FD∗

i:n
(x) = Hie

−λx +H ie
−ηix, where ηi = (n−i)λ+λ∗

n−i+1
. To prove the theorem we

have to show that for any i ∈ {1, . . . , n− 1},

g(x) =
FD∗

i+1:n
(x)

FD∗
i:n

(x)

is increasing in x. The numerator of g
′
(x), the derivative of g(x) is

A(x) = [Hie
−λx +H ie

−ηix][−λHi+1e
−λx − ηi+1H i+1e

−ηi+1x]

+[Hi+1e
−λx +H i+1e

−ηi+1x][λHie
−λx + ηiH ie

−ηix]

= (λ∗ − λ)

{
H iHi+1

n− i+ 1
e−(ηi+λ)x

−H i+1Hi

n− i
e−(ηi+1+λ)x − H iH i+1

(n− i+ 1)(n− i)
e(ηi+ηi+1)x

}

≥ (λ∗ − λ)

{(
H iHi+1

n− i+ 1
− H i+1Hi

n− i

)
e−(ηi+1+λ)x (5.8)

− H iH i+1

(n− i+ 1)(n− i)
e(ηi+ηi+1)x

}

=
(λ∗ − λ)

(n− i)(n− i+ 1)

{{
(n− i)H i − (n− i+ 1)H i+1 +H iH i+1

}
× e−(ηi+1+λ)x −H iH i+1e

−(ηi+ηi+1)x } . (5.9)
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The inequality in (5.8) follows, since λ∗ > λ implies ηi+1 > ηi.

Again λ∗ > λ implies λ < ηi and which in turn implies e−(ηi+1+λ)x ≥ e−(ηi+ηi+1)x

for every x ≥ 0. Also for λ∗ > λ ,

{
(n− i)H i − (n− i+ 1)H i+1

}
= (n− i)h(i)−H i+1

≥ 0, (5.10)

since for λ∗ > λ, h(j) is a decreasing function of j. Using these results in (5.9) we

find that A(x) and hence g′(x) is nonnegative for x ≥ 0. This proves the required

result.

Let X1, . . . , Xn be independent exponential random variables with hazard rates

λ1, . . . , λn, respectively. Pledger and Proschan (1971) proved that for i ∈ {1, . . . , n},

Di:n is stochastically larger when the hazard rates are unequal than when they are all

equal. Kochar and Rojo (1996) strengthened this result to likelihood ratio ordering.

The natural question is to examine whether the survival function of Di:n is Schur-

convex in (λ1, . . . , λn). Pledger and Proschan (1971) came up with a counterexample

to show that this is not true in general. Kochar and Korwar (1996) proved that in

the special case of second spacing, whereas the survival function of D2:n is Schur-

convex in (λ1, . . . , λn), its hazard rate is not Schur-concave. They proved, however,

that the hazard rate of D2:2 is Schur-concave. We now examine this question when

X1, . . . , Xn follow the single-outlier exponential model with parameters λ and λ∗. In

the rest of this section, we assume that λ∗ < λ. We will treat it as a part of the

model. It is easy to see that in this case, (λ∗1, λ1, . . . , λ1)
m
� (λ∗2, λ2, . . . , λ2) if and only

if λ∗1 < λ∗2 < λ2 < λ1 and λ∗1 + (n − 1)λ1 = λ∗2 + (n − 1)λ2. We prove later in this

section that for the single-outlier model, for i ∈ {1, . . . , n}, the hazard rate of Di:n is

Schur-concave in λ’s. To prove it we need the following lemmas.

lemma 5.1 Let X1, . . . , Xn follow the single-outlier exponential model with parame-
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ters λ and λ∗. Then

λ∗ < λ =⇒ Hi ≤
i− 1

n
, for i = 1, . . . , n, (5.11)

where Hi is given by (5.7). The inequality in (5.11) is reversed for λ∗ > λ.

Proof : λ∗ < λ implies that the function h(j) in (5.5) is increasing in j, j = 1, . . . , n.

Note that

(h(1), h(2), . . . , h(n))
m
� (1/n, . . . , 1/n).

The required result follows from the definition of majorization.

The proof for the case λ∗ > λ follows from the same kind of arguments.

lemma 5.2 Let X1, . . . , Xn follow the single-outlier exponential model with param-

eters λ1 and λ∗1. Let Y1, . . . , Yn be another set of random variables following the

single-outlier exponential model with parameters λ2 and λ∗2. If

(i) λ∗1 < λ∗2 < λ2 < λ1, then Θ1 ≥lr Θ2,

(ii) λ1 < λ2 < λ∗2 < λ∗1, then Θ1 ≤lr Θ2,

where Θ1 and Θ2 correspond to random variable Θ with probability mass function h(j)

in (5.5) for Xi’s and Yi’s, respectively.

Proof : (i) We prove that

h2(θ + 1)

h1(θ + 1)
≤ h2(θ)

h1(θ)
,

where h1 and h2 are probability mass functions of Θ1 and Θ2, respectively. This

inequality holds if and only if

(n− θ − 1)λ1 + λ∗1
(n− θ − 1)λ2 + λ∗2

≤ λ1

λ2

. (5.12)

Since λ∗1 < λ∗2 and λ2 < λ1, it is easy to see that (5.12) is true.

(ii) In this case the inequality in (5.12) is reversed which in turn implies that

Θ1 ≤lr Θ2. This proves the result.

28



Theorem 5.2 Let X1, . . . , Xn follow the single-outlier exponential model with pa-

rameters λ1 and λ∗1 with λ∗1 < λ1. Then for i ∈ {1, . . . , n}, the hazard rate of Di:n is

Schur-concave in {λ1, . . . , λ1, λ
∗
1}.

Proof : Let Y1, . . . , Yn be another set of random variables following the single-

outlier exponential model with parameters λ2 and λ∗2 (λ∗2 < λ2) such that (λ∗1, λ1, . . . , λ1)
m
�

(λ∗2, λ2, . . . , λ2). As discussed above this holds if and only if λ∗1 < λ∗2 < λ2 < λ1 and

λ∗1 + (n − 1)λ1 = λ∗2 + (n − 1)λ2. Without loss of generality, let us assume that

λ∗1 +(n−1)λ1 = 1. We have to prove that under the given conditions for i = 1, . . . , n,

D
(1)
i:n ≥hr D

(2)
i:n ,

where D
(1)
i:n (D

(2)
i:n) denotes the ith spacing of Xi’s (Yi’s). From (5.6) the survival

functions of D
(1)
i:n and D

(2)
i:n are

F
D

(1)
i:n

(x) = Pie
−αi1x + P ie

−α∗i1x,

F
D

(2)
i:n

(x) = Qie
−αi2x +Qie

−α∗i2x,

where Pi and Qi correspond to Hi in (5.6) for D
(1)
i:n and D

(2)
i:n , respectively and αi1 =

(n− i+ 1)λ1, α
∗
i1 = (n− i)λ1 + λ∗1, αi2 = (n− i+ 1)λ2 and α∗i2 = (n− i)λ2 + λ∗2.

We have to show that

φ(x) =
F

D
(1)
i:n

(x)

F
D

(2)
i:n

(x)

is increasing in x. After some simplifications we find that the numerator of φ
′
(x), the

derivative of φ(x) is

g(x) = −(αi1 − αi2)PiQie
−(αi1+αi2)x + (α∗i2 − α∗i1)P iQie

−(α∗i1+α∗i2)x

− (α∗i1 − αi2)QiP ie
−(αi2+α∗i1)x + (α∗i2 − αi1)QiPie

−αi1+α∗i2)x, (5.13)

Using the assumption λ∗1 < λ∗2 < λ2 < λ1 and the fact the λ∗i + (n − 1)λi = 1,

i = 1, 2 , it follows, αi1 + α∗i2 < αi1 + αi2, αi1 + α∗i2 > α∗i1 + α∗i2, αi1 + α∗i2 > α∗i1 + αi2
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and all (αi1−αi2), (α∗i2−α∗i1), (αi2−α∗i1), are nonnegative. Using these observations

in (5.13), we see

g(x) ≥ e−(αi1+α∗i2)x{−(αi1 − αi2)PiQi + (α∗i2 − α∗i1)P iQi

−(αi1 − α∗i2)QiPi + (αi2 − α∗i1)QiP i}

=
e−(αi1+α∗i2)x

n− 1
{Qi − Pi − (nQi − (i− 1))λ∗2 + (nPi − (i− 1))λ∗1}

≥ e−(αi1+α∗i2)x

n− 1
{Qi − Pi − n(Qi − Pi)λ

∗
2} (5.14)

=
e−(αi1+α∗i2)x

n− 1
(Qi − Pi)(1− nλ∗2)

≥ 0. (5.15)

The inequality in (5.14) follows, since by Lemma 5.1 Pi ≤ i−1
n

and λ∗1 < λ∗2. From

Lemma 5.2 it follows that Qi ≥ Pi, since it is known the likelihood ratio ordering

implies usual stochastic ordering. This observation along with the fact that λ∗2 ≤ 1/n

implies the inequality in (5.15).

Remark : The conclusion of Theorem 5.2 holds if instead of λ∗1 < λ1 and λ∗2 < λ2

we assume that λ∗1 > λ1 and λ∗2 > λ2.

It is known that spacings of independent exponential random variables have DFR

distributions (cf. Kochar and Korwar, 1996). Combining this observation with The-

orem 2.1, we have proved the following corollary.

Corollary 5.1 Under the assumptions of Theorem 5.2,

D
(1)
i:n ≥disp D

(2)
i:n .

A consequence of Corollary 5.1 is that var(D
(1)
i:n) ≥ var(D

(2)
i:n), i = 1, . . . , n.
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6 Stochastic ordering for sample range

Sample range is one of the criteria for comparing variabilities among distributions and

hence it is important to study its stochastic properties. First we study the stochastic

properties of the range of a random sample from a continuous distribution. Let

X1, . . . , Xn be a random sample from F and let Y1, . . . , Yn be an independent random

sample from another distribution G. It follows from Lemma 3(c) of Bartoszewic

(1986) that X ≥disp Y ⇒ Xn:n − X1:n ≥st Yn:n − Y1:n. This observation along with

Theorem 2.1 (a) leads to the following theorem.

Theorem 6.1 Let X ≥hr Y and let either F or G be DFR. Then

Xn:n −X1:n ≥st Yn:n − Y1:n. (6.1)

Next we consider the case when the parent observations are independent expo-

nentials but with unequal parameters. Let X1, . . . , Xn be independent exponential

random variables with Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a

random sample of size n from an exponential distribution with common hazard rate λ,

the arithmetic mean of the λi’s. Finally, let RX = Xn:n −X1:n and RY = Yn:n − Y1:n

denote the sample ranges of Xi’s and Yi’s, respectively. Kochar and Rojo (1996)

proved that RX ≥st RY . Khaledi and Kochar (2000 c) proved the following result

which is in terms of λ̃, the geometric mean of the λi’s.

Theorem 6.2 Let X1, . . . , Xn be independent exponential random variables with Xi

having hazard rate λi, for i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n

from an exponential distribution with common hazard rate λ̃ . Then,

RX ≥st RY .

Proof : The distribution function of RX (see David, 1981, p. 26) is

FRX
(x) =

1∑n
i=1 λi

n∑
i=1

λi

1− e−λix

n∏
i=1

(1− e−λix). (6.2)
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and that of RY is

GRY
(x) =

(
1− e−λ̃x)

)n−1
. (6.3)

Using (6.2) and (6.3), we have to show that

n∑
i=1

λi

1− e−λix

n∏
i=1

(1− e−λix) ≤
n∑

i=1

λi

(
1− e−λ̃x)

)n−1
. (6.4)

Multiplying both sides of (6.4) by x(> 0), it is sufficient to prove that

n∑
i=1

λix

1− e−λix

n∏
i=1

(1− e−λix) ≤
(

n∑
i=1

λix

)(
1− e−λ̃x)

)n−1
. (6.5)

Dykstra, Kochar and Rojo (1997) proved that

n∑
i=1

yi

1− e−yi
≤
(

n∑
i=1

yi

)
n∏

i=1

(1− e−yi)−
1
n ,

where yi > 0 for i = 1, . . . , n. Making use of this inequality on the L.H.S. of (6.5),

we get
n∑

i=1

λix

1− e−λix

n∏
i=1

(1− e−λix) ≤
(

n∑
i=1

λix

)
n∏

i=1

(
1− e−λix

)n−1
n (6.6)

A consequence of Theorem 4.4 (b) is thatXn:n ≥st Yn:n, which is equivalent to
∏n

i=1(1−

e−λix)1/n ≤ 1− e−λ̃x. Using this result, we find that the expression on the R.H.S. of

(6.6) is less than or equal to that on the R.H.S. of (6.5) and from which the required

result follows.

As a consequence of this result we get the following upper bound on the distribu-

tion function of RX in terms λ̃.

Corollary 6.1 Under the conditions of Theorem 6.2, for x > 0,

P [Xn:n −X1:n ≤ x] ≤
[
1− e−λ̃x

]n−1
. (6.7)

This bound is better than the one obtained in Kochar and Rojo (1996) in terms of

λ, since the expression on the R.H.S. of (6.7) is increasing in λ̃ and λ̃ ≤ λ.
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Now we extend Theorem 6.1 to the PHR model. We assume that F is new worse

than used (NWU), that is,

F (x+ y) ≥ F (x)F (y), for x, y ≥ 0,

or equivalently,

H(x+ y) ≤ H(x) +H(y), for x, y ≥ 0,

where H(x) = − logF (x) denotes the cumulative hazard of F .

Theorem 6.3 Let X1, . . . , Xn be independent random variables with Xi having sur-

vival function F
λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from

a distribution with survival function F
λ̃
(x), where λ̃ = (

∏n
i=1 λi)

1/n. If F is NWU,

then Xn:n −X1:n ≥st Yn:n − Y1:n.

Proof :

The distribution function of the sample range Xn:n − X1:n (see David, 1981, p.

26) is

FRX
n
(x) =

n∑
i=1

∫ +∞

0
λih(t)e

−λiH(t)
n∏

j 6=i

(
e−λjH(t) − e−λjH(t+x)

)
dt

≤
n∑

i=1

∫ +∞

0
λih(t)e

−λiH(t)
n∏

j 6=i

(
e−λjH(t) − e−λjH(t)e−λjH(x)

)
dt

(since F is NWU )

=
n∑

i=1

λi

∏
j 6=i

(1− e−λjH(x))
∫ +∞

0
h(t)

n∏
j=1

e−λjH(t)dt

=
n∑

i=1

λi

∏
j 6=i

(1− e−λjH(x))
∫ +∞

0
h(t)e−H(t)

∑n

j=1
λj

=
1∑n

i=1 λi

n∑
i=1

λi

1− e−λiH(x)

n∏
i=1

(1− e−λiH(x)), x > 0,

Now, replacing x with H(x) in the proof of Theorem 6.2, it is easy to see that

FRX
n
(x) ≤ FRY

n
(x).
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