

A Note on Characterization of Symmetry About a Point

Subhash C. Kochar

The Statistician, Vol. 41, No. 2 (1992), 161-163.

Stable URL:

http://links.jstor.org/sici?sici=0039-0526%281992%2941%3A2%3C161%3AANOCOS%3E2.0.CO%3B2-R

The Statistician is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

A note on characterization of symmetry about a point

SUBHASH C. KOCHAR

Indian Statistical Institute, New Delhi 110 016, India

Abstract. Behboodian investigated, *inter alia*, the question of symmetry of a linear form in three independent and identically distributed random variables implying their symmetry about some point. By providing a counter-example, we point out a flaw in Behboodian's paper.

1 Introduction

Let X_1, \ldots, X_n be a random sample from an absolutely continuous distribution with cumulative distribution function F and density function f. X is said to be symmetric about θ if and only if the random variables $X - \theta$ and $\theta - X$ have the same distribution. If $\theta = 0$, we simply call X a symmetric random variable.

Randles et al. (1980) proposed an asymptotically distribution-free test for testing the symmetry of X about an unknown point θ . It is easy to prove that the symmetry of X about θ implies the symmetry of the random variable $X_{\lambda}^* = X_1 - \lambda X_2 - \overline{\lambda} X_3$ (about 0) where $0 < \lambda \le 1, \overline{\lambda} = 1 - \lambda$; and X_1, X_2 and X_3 are three independent copies of X. Their test, which is commonly known as the 'triples test', is based on the U statistic estimator $\hat{\eta}$ of the parameter

$$\eta = \Pr\{X_1 + X_2 - 2X_3 > 0\} - \Pr\{X_1 + X_2 - 2X_3 < 0\}$$
 (1)

Obviously, under H_0 , $\eta = 0$.

Behboodian (1989) studies some properties of η . Also, Theorem 1 there asserts that for independent, identically distributed random variables X_1 , X_2 and X_3 —assumed to have a non-vanishing characteristic function (CHF.)—the symmetry of $X_1 + X_2 - 2X_3$ is equivalent to the symmetry of X_1 about some point. The proof depends on the (false) conclusion that exponential functions are the only (continuous) solutions of the functional equation $f(2t) = \{f(t)\}^2$. The example below provides a family of CHFs, non-vanishing on \mathbb{R} and satisfying the functional equation

$$\phi(2t) = \{\phi(t)\}^2 \,\forall t \in \mathbb{R} \tag{2}$$

Then, the CHF of $X_1 + X_2 - 2X_3$ is real-valued, being equal to

$$\{\phi(t)\}^2\phi(-2t) = |\phi(2t)|^2 = \{\phi(-t)\}^2\phi(2t) \qquad (>0 \ \forall t \in \mathbb{R})$$

We shall see below that there exists no real c such that $\phi(-t) = \phi(t)e^{ct} \forall t \in \mathbb{R}$, i.e. X_1 cannot be symmetric about any point. Thus we have a counter-example to the quoted assertion.

2. Example

Consider an infinitely divisible CHF ϕ with the Lévy representation

$$L(0,0,M,N) \equiv \log \phi(t)$$

$$= \int_{-\infty}^{0} \left[e^{itu} - 1 - \frac{itu}{1+u^2} \right] dM(u)$$

$$+ \int_{0}^{\infty} \left[e^{itu} - 1 - \frac{itu}{1+u^2} \right] dN(u)$$

(for an explanation of the notation and other details, see Ramachandran, 1967, pp. 27–29), where M and N are subject to the following additional conditions:

$$M(u) = 2M(2u)$$
 for $u < 0$ $N(u) = 2N(2u)$ for $u > 0$
 $M(-u) \neq -N(u-)$ or $N(-u) \neq -M(u-)$ (3)

and

$$\int_{-\infty}^{0} h(u) dM(u) + \int_{0}^{\infty} h(u) dN(u) = 0$$

where

$$h(u) = u^3 / \{ (1 + u^2)(4 + u^2) \}$$
(4)

Let $\psi(t) = \log \phi(t)$. Then

$$\psi(2t) = \int_{-\infty}^{0} \left\{ e^{2itv} - 1 - \frac{2itv}{1 + v^{2}} \right\} dM(v)$$

$$+ \int_{0}^{\infty} \left\{ e^{2itv} - 1 - \frac{2itv}{1 + v^{2}} \right\} dN(v)$$

$$= \int_{-\infty}^{0} \left\{ e^{itu} - 1 - \frac{itu}{1 + (u^{2}/4)} \right\} dM\left(\frac{u}{2}\right)$$

$$+ \int_{0}^{\infty} \left\{ e^{itu} - 1 - \frac{itu}{1 + (u^{2}/4)} \right\} dN\left(\frac{u}{2}\right)$$

$$= 2 \left[\int_{-\infty}^{0} \left\{ e^{itu} - 1 - \frac{itu}{1 + u^{2}/4} \right\} dM(u) \right]$$

$$+ \int_{0}^{\infty} \left\{ e^{itu} - 1 - \frac{itu}{1 + (u^{2}/4)} \right\} dN(u) \right]$$

(by equation (3)). Hence, by equation (4)

$$2\psi(t) - \psi(2t) = 6it \left[\int_{-\infty}^{0} h(u) \, dM(u) + \int_{0}^{\infty} h(u) \, dN(u) \right]$$
$$= 0 \, \forall t \in \mathbb{R}$$

so that equation (2) holds.

However, $\tilde{\psi}(\cdot) = \psi(-.)$ also has a Lévy representation, i.e. $L(0, 0, \tilde{M}, \tilde{N})$, with $\tilde{M}(-u) = -N(u)$ for u > 0 and $\tilde{N}(-u) = -M(u-)$ for u < 0. The uniqueness of the Lévy representation implies that a relation of the form $\tilde{\psi}(t) = \psi(t) + ict \ \forall t \in \mathbb{R}$ will hold, for some real c, if and only if c = 0, $\tilde{M} = M$ and $\tilde{N} = N$; but, by our assumptions on M and N, at least

one of the last two equalities is ruled out. Thus ϕ does not correspond to a distribution symmetric about some point, whereas $\{\phi(t)\}^2\phi(-2t)$ is real-valued.

A specific choice of M and N subject to equation (3) is given by

$$M(u) = \sum_{n=-\infty}^{\infty} 2^{-n} \delta_{-2n}(u)$$
 $N(u) = c \sum_{n=-\infty}^{\infty} 2^{-n} \overline{\delta}_{2(n+1/2)}(u)$

where c < 0 is chosen so as to satisfy the last condition in equation (3): M and N are easily seen to satisfy the conditions of the Lévy representation as well as the other conditions in equation (3). Here, as usual, $\delta_a(u) = 1$ for $u \ge a$ and 0 for u < a and $\overline{\delta}_a(u) = 1 - \delta_a(u)$.

3 Some remarks

Rao & Shanbhag (1992) have shown that if X is assumed to be integrable with a non-vanishing CHF, then for any $0 < \lambda < 1$, $X_{\lambda}^* = X_1 - \lambda X_2 - \overline{\lambda} X_3$ is symmetric (about 0) if and only if X is symmetric about some point.

A sufficient condition for $\eta < 0$ is that X is convex ordered with respect to -X (see van Zwet (1964) for the concept of convex ordering). Thus the one-sided test of Randles *et al.* (1980) is consistent for testing symmetry against the alternative: X is convex ordered with respect to -X.

Acknowledgement

The author is grateful to Professor B. Ramachandran for fruitful discussions on this problem and to the referee for his suggestions.

References

Behboodian, J. (1989) A note on skewness and symmetry, The Statistician, 39, pp. 21-23.

RAMACHANDRAN, B. (1967) Advanced Theory of Characteristic Functions (Calcutta, Statistical Publishing Society).

RANDLES, R. H., FLIGNER, M. A., POLICELLO, G. E. & WOLFE, D. A. (1980) An asymptotically distribution-free test for symmetry versus asymmetry. *Journal of the American Statistical Association*, 75, pp. 168–172.

RAO, C. R. & SHANBHAG, D. N. (1992) Further observations on the integrated Cauchy functional equation, *Mathematische Nachrichten*, in press.

Van Zwet, W. R. (1964) Convex Transformations of Random Variables (Amsterdam, Mathematische Centrum).