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Abstract

We consider the problem of testing the null hypothesis of proportionality of two cause
specific hazard rates against the alternative that the ratio of the two hazard rates is
monotone in the competing risks model. No assumption is made about the independence
of the notional risks. The problem is seen to be equivalent to testing independence of
T and C against positive likelihood ratio dependence, where T denotes time to failure
and C indicates cause of failure. Thus T is assumed to be a continuous random variable
while C is discrete. We consider conditional as well as unconditional tests. Whereas the
conditional test is exactly distribution–free, the unconditional tests are asymptotically
distribution–free.

1. Introduction

Competing risks survival analysis is a generalization of ordinary survival analysis in

which each unit under study is exposed to a number of different risks but the actual

failure results from just one of these risks.
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Suppose that there are only two possible causes of failure labeled 1 and 2 and that the

notional times to failure of a unit under these two risks are denoted by random variables

X and Y , respectively. We assume that the joint distribution of X and Y is absolutely

continuous with respect to Lebesgue measure on R2 so that P (X = Y ) = 0. Thus,

the cause of failure, C, is 1 if and only if X < Y . However, all that we can observe is

T = min(X,Y ), the time to failure, and the corresponding cause of failure, C. Data of

this type can also arise in two–component series systems in reliability models.

Let the joint probability density of X and Y be denoted by f(x, y) and the cor-

responding survival function by F (x, y) = P (X > x, Y > y). The survival function

corresponding to T is, of course, given by H(t) = F (t, t) = P (T > t). (Ordinarily, being

lifetimes, X and Y would be positive, but we need not make this assumption.)

It is common in the literature to assume that X and Y are independent. However,

as noted by Gail [12], among others, this assumption is often unrealistic since the two

risks act under the same environment. The problem is compounded by the fact that

independence of X and Y cannot be tested on the basis of observed data of the form

(T,C) (cf. Cox [8] ).

To quantify the risks of failure from the various causes, the concept of cause specific

hazard rate is often used. This is an extension of the ordinary definition of hazard rate

to the competing risks situation. The cause specific hazard rate corresponding to the ith

cause is defined as

gi(t) = lim
∆t→∞

1

∆t
P (t < T ≤ t+ ∆t, C = i | T > t), i = 1, 2.

In terms of the joint density f(x, y), we can write,

g1(t) =

∫ ∞
t

f(t, y)dy/H(t) , and

g2(t) =

∫ ∞
t

f(y, t)dy/H(t).

In essence, gi(t) is the instantaneous rate of failure at time t from the ith cause given

that the item has survived up to time t. Observe that the sum g1(t) + g2(t), is equal to

the hazard rate rT (t) of T . It is easy to see that if X and Y are independent, then g1

and g2 are simply the hazard rates corresponding to the marginal distributions of X and

Y , respectively.

It is important to compare the relative risks of failure due to the two causes at various

times. Aly, Kochar and McKeague [1] and Dykstra, Kochar and Robertson [11], among

others, have proposed distribution–free tests for testing the equality of cause specific
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hazard rates against ordered alternatives. Sen [21] has also proposed nonparametric

tests for testing the interchangeability of two risks under a competing risks model.

In this paper, we shall consider a somewhat different problem. Typically, g1(t) and

g2(t) are changing with time. In many applications, particularly in the medical field, it

is of interest to determine whether the two cause specific hazard rates are proportional

to each other or whether one risk progresses faster than the other. That is, we wish to

test whether the relative risk (or equivalently the cause specific hazard ratio) is constant,

against the alternative that this ratio is monotone increasing (or decreasing). The pro-

portional cause specific hazard model has been widely used in the literarture (cf. Chiang

[5], [6], [7] Chapter II and Holt [15]). As Kalbfleisch and Prentice ([16], pp 170-171)

observe, this proportionality assumption greatly simplifies the further analysis of com-

peting risks data. On the other hand, there are many practical situations where one risk

progresses faster than the other. For example, it is generally recognized that beyond the

onset of menopause, the cause specific hazard rate for heart disease in women increases

much faster than the cause specific hazard rates for many other risks. The recognition

of this fact has led to significant changes in medical care for women. Thus, our goal is

to provide a solution to the following problem:

On the basis of a random sample (T1, C1), . . . , (Tn, Cn) on (T,C), we wish to test the

null hypothesis,

H0 : g2(t) = cg1(t) , t ≥ 0

for some unknown constant c, against the alternative,

HA : g2(t)/g1(t) is nondecreasing in t (but not constant) .

To further understand these hypotheses define the regression functions:

πi(t) = P (C = i | T = t), i = 1, 2.

It is easy to see that πi(t) = gi(t)/rT (t) and π1(t) + π2(t) = 1. In terms of the πi’s, the

above hypotheses are

H0 : π2(t) (and hence π1(t)) is constant in t,

HA : π2(t) is nondecreasing in t (but not a constant).

Given that a failure has occurred at time t, the conditional probability that this failure is

due to cause 2, remains constant in t under the null hypothesis, but under the alternative,

π2(t) is increasing with time. The hypothesis HA says that as time passes, the probability

that a failure is due to cause 2, increases and the probability that it is due to cause 1

decreases. Another way of formulating the alternative HA is to note that it is equivalent
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to T and C being positively likelihood ratio dependent (cf. Lehmann [18]). Observe that

T and C are independent under H0.

These hypotheses are of interest in parametric models as well. Gumbel’s bivariate

exponential distribution (Gumbel, 1960) has joint survival function

F̄ (x, y) = exp[−{λ1x+ λ2y + λ3xy}] , x, y ≥ 0

for λ1, λ2, λ3 ≥ 0. Since the cause specific hazard rates are gi(t) = λi + λ3t, i = 1, 2, it

easily follows that g1(t)/g2(t) is nondecreasing in t if and only if λ1 < λ2 when λ3 > 0

while g1(t)/g2(t) is constant in t if either λ1 = λ2 or λ3 = 0.

However, for the absolutely continuous bivariate exponential (ACBVE) distribution

of Block and Basu [4] with joint survival function

F̄ (x, y) =
λ

λ1 + λ2
exp[−λ1x− λ2y − λ3 max(x, y)]

− λ3

λ1 + λ2
exp[−λmax(x, y)] , x, y ≥ 0 ,

the cause specific hazard rates are given by gj(t) =
λλj

(λ1+λ2) , j = 1, 2 where λ1, λ2, λ3 are

nonnegative parameters and λ = λ1 + λ2 + λ3. For this model, the ratio of the cause

specific hazard rates is always constant.

Recently, Ryu [22] has extended the bivariate exponential model of Marshall and

Olkin in such a way that it is absolutely continuous (although it need not be memoryless).

His model allows both H0 and HA to be true for appropriate choices of the parameters.

As another example, consider the contaminated model,

f(x, y) = (1− ε)f1(x)f2(y) + εf3(x)f4(y), 0 < ε < 1 ,

where the hazard rates for the fi’s are proportional. That is, the hazard rates satisfy

ri(t) = λir(t) and as a consequence, their survival functions satisfy F̄i(t) = [F̄ (t)]λi ,

i = 1, 2, 3, 4. Observe that X and Y will not be independent. It can be seen after some

simplifications that g1(t) is proportional to g2(t) if either λ1/λ2 = λ3/λ4 or λ3 + λ4 =

λ1+λ2; and g1(t)/g2(t) is nondecreasing if and only if (λ2λ3−λ1λ4)[λ3+λ4−λ1−λ2] > 0.

The assumption of absolute continuity of the joint distribution of (X,Y ) is crucial

in our development. This assumption ensures that P (X = Y ) = 0. However, there

are many bivariate models of practical interest that are not absolutely continuous. An

important example is the Marshall-Olkin bivariate exponential distribution. When the

event {X = Y } occurs the cause of failure cannot be uniquely assigned to the different
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risks and this leads to identifiability problems. The occurrence of the event {X = Y }
does not provide any information to compare the relative risks.

Prentice et al. [19] emphasize that only quantities that are expressible in terms of

cause specific hazard rates are identifiable and thus can be estimated from competing

risks data. In this paper, our hypotheses are phrased in terms of the cause specific hazard

rates and hence identifiability is not a problem.

In Section 2, we propose two asymptotically distribution-free tests for the above

testing problem. The first test is based on an estimate of the average deviation between

H0 and HA. The test statistic can be expressed as a linear rank statistic. The second test

we propose is of the Kolmogorov type and its asymptotic null distribution is the same

as that of the one–sample, one–sided Kolmogorov test for goodness-of-fit. Our tests are

less subjective than the graphical procedures based on inspection of the empirical cause

specific hazard rates suggested by Kalbfleisch and Prentice [16]. In Section 3, the powers

of the tests proposed in this paper have been compared with the help of a simulation

study. In the fourth section, the procedures developed in this paper are illustrated with

a numerical example on survival data. Finally, in the last section, it is briefly noted

that by conditioning on the observed number of failures from the first cause, completely

distribution-free versions of the above tests can be obtained.

2. The Proposed Tests

We propose two asymptotically distribution-free tests for our testing problem. The

first test is based on an estimator of the average measure of deviation between H0 and

HA and the second test considers the supremum of a measure of deviation between H0

and HA.

For x ≥ y, let δ(x, y) = π2(x) − π2(y) = π1(y) − π1(x). Under H0, δ(x, y) = 0, but

under HA, it is nonnegative for all x ≥ y and δ(x, y) > 0 for some x > y. Consider the

following measure of average deviation between H0 and HA,

∆ =

∫ ∫
x≥y

δ(x, y)dH(x)dH(y)

=

∫ ∞
−∞

[
S1(y)− S̃1(y)

]
dH(y)
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where,

S1(y) =

∫ y

−∞
π1(t)dH(t)

= P [C = 1, T < y] ,

S̃1(y) =

∫ ∞
y

π1(t)dH(t)

= P [C = 1, T > y]

Thus ∆ becomes

∆ = P [C1 = 1, T1 < T2]− P [C1 = 1, T1 > T2] (2.1)

where (T1, C1) and (T2, C2) are two independent copies of (T,C).

Given a random sample {Ti, Ci}, i = 1, · · · , n on {T,C} we can estimate ∆ by using

a U–statistic with kernel

ϕ(T1, C1; T2, C2) =



1 if T2 > T1, C1 = 1, C2 = 0 or

T1 > T2, C1 = 0, C2 = 1

−1 if T1 > T2, C1 = 1, C2 = 0 or

T2 > T1, C1 = 0, C2 = 1

0, otherwise.

(2.2)

Our U–statistic estimator of ∆ is

Un =
[(n

2

)]−1 ∑∑
1≤k<l≤n

ϕ{Tk, Ck;Tl, Cl} (2.3)

and large values of Un are significant for testing H0 against HA.

It is easy to compute the test statistic Un using the ranks of the observed times to

failure. Let T(1) < T(2) < · · · < T(n) be the ordered Ti’s and let

Wj =

{
1 if T(j) corresponds to cause 1

0, otherwise.

Then Vn =
(
n
2

)
Un can be expressed as

Vn =

n∑
j=1

(n− 2j + 1)Wj

=
n∑
j=1

ajWj

=
n∑
j=1

(n− 2Rj + 1)δj ,

(2.4)
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where aj = n− 2j + 1, Rj is the rank of Tj , and δj = 1 if Cj = 1 and 0 otherwise.

The null distribution of Un

We use the method of moment generating function to find the null distribution of Vn

(or Un). As seen earlier, under H0, T1, . . . , Tn and C1, . . . , Cn are mutually independent.

As a result, W1, . . . ,Wn are independent and identically distributed Bernoulli random

variables with P (Wi = 1) = P (C = 1) = θ. Using this, we obtain the moment generating

function of Vn under H0 as

Mθ(t) =
n∏
j=1

[
(1− θ) + θeajt

]
, (2.5)

where aj = (n− 2j + 1). This gives, under H0, E(Vn) = 0, and var (Vn) = (4/3)n(n2 −
1)θ(1− θ). As shown in the Appendix, the null distribution of Vn is symmetric about 0

and it depends only on the unknown parameter θ. If θ is known, the exact distribution

of Vn can be obtained as in Bagai, Deshpandé and Kochar [2]. However, in general, θ is

not known. The next theorem gives the least favorable distribution of Vn under H0.

Theorem 2.1. The least favorable distribution of Vn under H0 occurs at θ = 1/2 in the

sense that Pθ(Vn ≥ v) ≤ P1/2(Vn ≥ v) for any v > 0.

The proof of this theorem is given in the Appendix.

To give an idea of the difference between the actual value of Pθ(Vn ≥ v) and the

least favorable probability P 1
2
[Vn ≥ v], we find that for n = 8, P 1

2
(Vn ≥ 11) = 0.04687

and P 1
4
(Vn ≥ 11) = 0.02856 while for n = 10, P1/2(Vn ≥ 15) = 0.05273 and P1/4(Vn ≥

15) = 0.03294. Asymptotically, these probabilities are 0.05 and 0.03 for θ = 1/2 and 1/4,

respectively.

If n is large, θ can be estimated consistently by the corresponding sample propor-

tion θ̂n = 1
n

∑n
i=1 I{Ci=1}. Since Un is a U–statistic, it follows that an asymptotically

distribution–free test for testing H0 against HA at level α has rejection region

V ∗n = [3/{4(n2 − 1)θ̂n(1− θ̂n)}]1/2 ≥ zα (2.6)

where zα is the (1− α)th quantile of the standard normal distribution.

A Kolmogorov type test
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Let
ψ(t) = S1(t)− θH(t)

= P [T ≤ t, C = 1]− P [C = 1] P [T ≤ t].

Under H0, ψ(t) ≡ 0, but under the alternative HA, ψ(t) ≥ 0, as positive likelihood

ratio dependence implies positive quadrant dependence (cf. Lehmann [18]).

Let

S1n(t) =
1

n

n∑
i=1

I{Ci=1, T≤t}

Hn(t) =
1

n

n∑
i=1

I{Ti≤t} , and

hn(t) =

[
n

θ̂n(1− θ̂n)

]1/2[
S1n(t)− θ̂nHn(t)

]
Then our suggested test statistic is

√
nD+

n = sup
−∞<t<∞

hn(t)

=

[
1

nθ̂n(1− θ̂n)

]1/2

max
1≤i≤n

[
Nin − iθ̂n

]
,

(2.7)

where

Ni,n = #{1 ≤ k ≤ i, Wk = 1}.

Large values of D+
n are significant for testing H0 against H1. To study the asymptotic

null distribution of
√
nD+

n , we use the following empirical convergence result due to

Csörgo [9].

Theorem 2.2. If H0 holds, then on an appropriate probability space, there exists a

sequence of Brownian bridges Bn(u), 0 ≤ u ≤ 1, such that as n→∞,

sup
∞<t<∞

|hn(t)−Bn(H(t))| −→ 0 almost surely.

Using this result, it follows that under H0,

√
nD+

n
dist−→ sup

0≤u≤1
B(u) as n→∞

and it is well known that

P
[

sup
0≤u≤1

B(u) > t
]

= e−2t2 , t > 0 (2.8)
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(see, Shorack and Wellner [22]).

Thus the asymptotic null distribution of
√
nD+

n is the same as that of the one–sided

Kolmogorov–Smirnov test for goodness-of-fit.

It is to be noted that our Vn statistic is asymptotically equivalent to the statistic∫∞
−∞ hn(t)dHn(t) which converges in distribution to a normal random variable

∫ 1

0
B(u)du,

as has been established earlier.

3. A Monte Carlo Power Comparison

To compare the powers of our large sample tests, a simulation study was performed

by generating 5000 random samples of different sizes from the distribution of (X,Y ),

where X and Y are independent random variables having Weibull distributions with

shape parameters 1 and λ, respectively. For λ > 1, g2(t)/g1(t)) = λtλ−1 is nondecreasing

in t. The case λ = 1 corresponds to H0.

Table 3.1

Estimated powers of the Vn and the D+
n tests at 5% level

n λ = 1.25 λ = 1.25 λ = 2 λ = 2
Vn D+

n Vn D+
n

25 .1518 .1230 .6065 .5018
50 .2370 .2070 .8701 .8080

100 .3815 .3288 .9888 .9721

The 5% critical points of V ∗n and
√
nD+

n were estimated from the simulated data by

taking λ = 1. These values for V ∗n and
√
nD+

n are 1.74, 1.69 and 1.65 (1.14, 1.15 and

1.18) for n= 25, 50 and 100, respectively. From the asymptotic distributions of V ∗n and
√
nD+

n , the upper 5% critical values are 1.645 and 1.2238, respectively. Thus we see that

for n = 100, the asymptotic approximation to the null distribution of V ∗n is quite good,

but that of
√
nD+

n is somewhat conservative.

In the power comparison, we used the simulated critical points for λ = 1.25 and

λ = 2. These estimated powers are reported in Table 3.1. It is seen from this table that

for the above mentioned alternatives, the Vn test performs better than the D+
n test.
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4. An Example

We consider some mortality data provided by Dr. H.E. Walburg, Jr. of the Oak

Ridge National Laboratory (see Hoel [14]). The data was obtained from a laboratory

experiment on RFM strain of male mice which had received a radiation dose of 300r at

an age of 5–6 weeks and were kept in a conventional environment. We consider only two

major risks of death — the first risk is cancer and the second risk is the accumulation of

all other risks into a single group. Table 4.1 gives autopsy data for 99 such mice.

Table 4.1

Ages at death in days for 99 RFM conventional male mice
which received a radiation dose of 300r at the

age 5–6 weeks due to cancer and due to all other causes

Other causes

40 42 51 62 163 17 9 206 222 228 249
252 282 324 333 341 366 385 407 420 431
441 461 462 482 517 517 524 564 567 586
619 620 621 622 647 651 686 761 763

Cancer

159 189 191 198 200 207 220 235 245
250 256 261 265 266 280 317 318 343
356 383 399 403 414 428 432 495 525
536 549 552 554 557 558 571 586 594
596 605 612 621 628 631 636 643 647
648 649 661 663 666 671 695 697 700
705 712 713 738 748 753

Let g2(t) and g1(t) denote the cause specific hazard rates of death due to cancer

and all other causes combined, respectively. On the basis of the above data we wish to

test H0 against HA. We rank these 99 observations from 1 to 99. Ties are broken by

randomization. The observed value of the standardized statistic V ∗n given by (2.6) is 1.87

with the corresponding p–value as 0.0307. The observed value of
√
nD+

n is 1.259 and

using (2.8) we find the p–value as 0.042. Thus, there is sufficient evidence to reject H0

at the 5% level of significance.



DYKSTRA et al. 11

5. Conditional Tests

Let N1 =
n∑
i=1

Wi, the number of failures from cause 1. Then the conditional distri-

bution of (W1, . . . ,Wn) given N1 = n1 is independent of θ if H0 is true and is given

by

P{W1 = w1, . . . ,Wn = wn|
n∑
i=1

Wi = n1} =

{ 1

( n
n1

)
, if

∑n
i=1 wi = n1

0, otherwise.

Since the statistics Vn and D+
n are based on Wi’s, their conditional distributions

given N1 are independent of the parameter θ under the null hypothesis and the resulting

conditional tests are exactly distribution-free. We feel that the statistic N1 is ancillary

for this problem although we have not obtained a rigorous proof for this. However, in

case T is decrete, Bhapkar [3] has shown that the statistic N1 is strongly ancillary. It will

be interesting to compare the performance of the conditional tests with the unconditional

ones but we shall not pursue this matter here.

Appendix

We need the following notion of peakedness of probability distributions.

Definition. A random variable X1 with c.d.f. F1 is said to be less peaked than X2 with

c.d.f. F2 (written as X1

p

≤ X2 or F1

p

≤ F2) if |X1| is stochastically greater than |X2|.
If X1 and X2 are symmetric about the origin, then X1

p

≤ X2 if and only if

P (X1 > x) ≥ P (X2 > x)

for all x > 0.

It is easy to see that under H0, when W1, . . . ,Wn are independent and identically

distributed Bernoulli random variables with probability of success θ, the distribution of

V is symmetric about the origin. This follows since the coefficients ai = (n− 2i+ 1) of

Wi in

V =
∑

aiWi

satisfy ai = −an−i+1, i = 1, 2, . . . , n with
∑n
i=1 ai = 0. Hence to prove Theorem 2.1, it

is equivalent to prove the following:

Theorem 2.1. Let W1, . . . ,Wn be independent Bernoulli random variables each with

parameter θ, 0 < θ < 1. Then the distribution of V =
∑n
i=1 aiWi is least peaked when

θ = 1
2 .
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Proof. V can be expressed in the form

V =
m∑
i=1

aiYi, ai ≥ 0

where Yi = Wi − W ∗i and m =
[
n+1

2

]
and (Wi,W

∗
i ) are independent and identically

distributed Bernoulli trials with parameter θ.

The distribution of Yi is

P (Yi = 1) = P (Yi = −1) = θ(1− θ)

P (Yi = 0) = 1− θ(1− θ).

Since the maximum value of θ(1− θ) which is 1
4 occurs at θ = 1

2 , it follows that the

distribution of each Yi is symmetric and unimodal about the origin.

Also,

Y ∗i
p

≤ Yi, i = 1, 2, . . . ,m

where Y ∗i corresponds to the distribution of Yi with θ = 1
2 . Since a1, . . . , am are non-

negative, it follows that each aiYi is symmetric and unimodal with

aiY
∗
i

p

≤ aiYi, i = 1, 2, . . . ,m.

It follows from Theorem 7.6 (p. 165) of Dharmadhikari and Joag–Dev [10] that

m∑
i=1

aiY
∗
i

p

≤
m∑
i=1

aiYi,

proving that the distribution of V under H0 is least favorable when θ = 1
2 .
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[2] Bagai, I., Deshpandé, J. V. and Kochar, S. C. (1989). Distribution-free tests for the

stochastic ordering alternatives under the competing risk model. Biometrika 76,

75–81.

[3] Bhapkar, V.P. (1989). Conditioning on ancillary statistics and loss of information in

the presence of nuisance parameters. J. Statist. Plan. Inf. 21, 139–160.

[4] Block, H. W. and Basu, A. P. (1974). A continuous bivariate exponential distribution.

J. Amer. Stat. Assoc. 69, 1031–1037.

[5] Chiang, C.L. (1961). On the probability of death from specific causes in the presence

of competing risks. Proc. Fourth Berkeley Symposium in Math. Statist . IV (L.

M. LeCam et al. eds.) Berkeley : University of California Press, 169-180.

[6] Chiang, C. L. (1968). Introduction to Stochastic Processes in Biostatistics. Wiley,

New York.

[7] Chiang, C. L. (1970). Competing risks and conditional probabilities. Biometrics 26,

767-776.

[8] Cox, D. R. (1959). The analysis of exponentially distributed lifetimes with two types

of failures. J.R. Statist. Soc. 21, 411–421.
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