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Abstract

In this note, we further study the properties of excess wealth (or right spread) order and the location
independent riskier order. It is proved that if X is less variable than Y according to excess wealth order, then
Xn:n−Xk:n ≤icx Yn:n−Yk:n for k = 0, 1, . . . , n−1, where X0:n = Y0:n ≡ 0. Similar results are obtained for
location independent riskier order. An application in k-price business auction models is presented as well.
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1. Introduction and motivation

The concept of variability is a basic one in statistics, probability and many other related
areas, such as reliability theory, business, economics and actuarial science, among others. Most
of the classical methods for variability comparisons are based only upon summary statistics
such as variance and standard deviation which are usually quite noninformative though they are
convenient to deal with. In the past two decades, several more refined stochastic orders which
compare variabilities of random variables based on their entire distribution functions, have been
introduced in the literature. Shaked and Shanthikumar [19] and Müller and Stoyan [16] present
comprehensive discussions on most of those concepts and their properties. In this note, we further
study some properties of a variability order, known as excess wealth order or right spread order,
as described below.
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Let X and Y be two random variables with their distribution functions F and G and survival
functions F̄ = 1 − F and Ḡ = 1 − G, respectively. Denote by F−1 and G−1 their corresponding
right continuous inverses. A basic concept for comparing variability or spread between two
probability distributions is that of dispersive ordering. X is said to be less dispersed than
Y , written as X ≤disp Y or F ≤disp G, if F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) for all
0 < α ≤ β < 1. Muñoz-Perez [17] proved that

X ≤disp Y ⇐⇒ (X − F−1(p))+ ≤st (Y − G−1(p))+, for every p ∈ (0, 1), (1)

where (Z)+ = max{Z , 0} and the stochastic ordering X ≤st Y holds in the sense that F̄(x) ≤

Ḡ(x) for all x . Based on this observation, Fernandez-Ponce et al. [8] proposed the right spread
ordering, which is implied by dispersive ordering and hence is a weaker variability order.

Definition 1. X is said to be less right spread out than Y (X ≤RS Y ) if

E[(X − F−1(p))+] ≤ E[(Y − G−1(p))+], for every p ∈ (0, 1), (2)

provided the expectations exist. Or equivalently, if∫
∞

F−1(p)

F̄(x) dx ≤

∫
∞

G−1(p)

Ḡ(x) dx, for every p ∈ (0, 1). (3)

This ordering was also independently studied in Shaked and Shanthikumar [20] and was called
as excess wealth ordering. Refer to Kochar et al. [11] and Li and Shaked [13] for its further
properties.

Recall that X is said to be smaller than Y in the increasing convex order (denoted by X ≤icx Y )
if ∫

+∞

t
F̄(x) dx ≤

∫
+∞

t
Ḡ(x) dx, for all t.

Note that X ≤st Y H⇒ X ≤icx Y , Belzunce [4] developed the following useful characterization
of the right spread order in terms of the increasing convex order,

X ≤RS Y ⇐⇒ (X − F−1(p))+ ≤icx (Y − G−1(p))+, for all p ∈ (0, 1).

The right hand side inequality is equivalent to∫
∞

t
F̄(x + F−1(p)) dx ≤

∫
∞

t
Ḡ(x + G−1(p)) dx, for all p ∈ (0, 1) and t. (4)

In order to compare two random assets in economics, Jewitt [9] introduced the location
independent riskier order as below, which is dual to the concept of excess wealth order and
is also of interest in rank dependent expected utility frameworks, see Chateauneuf et al. [6].

Definition 2. X is said to be smaller than Y in the location independent riskier order (denoted
by X ≤lir Y ) if∫ F−1(p)

−∞

F(x) dx ≤

∫ G−1(p)

−∞

G(x) dx, for all p ∈ (0, 1). (5)



Author's personal copy

S. Kochar et al. / Statistical Methodology 4 (2007) 385–392 387

It is of interest to study how a variability ordering between two probability distributions
affects the relative positioning of the corresponding observations in random samples from the
two distributions. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of a random sample
X1, X2, . . . , Xn on X . Similarly, denote by Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n the order statistics of a
random sample Y1, Y2, . . . , Yn on Y . Let Ui :n ≡ X i :n − X i−1:n and Vi :n ≡ Yi :n − Yi−1:n be the
respective i-th sample spacings with X0:n = Y0:n ≡ 0, for i = 1, . . . , n. Bartoszewicz [2] proved
that

X ≤disp Y H⇒ (U1:n, . . . , Un:n) ≤st (V1:n, . . . , Vn:n), (6)

which implies

X j :n − X i :n ≤st Y j :n − Yi :n, for 1 ≤ i < j ≤ n. (7)

This paper further investigates this problem and extends the implication in (7) when dispersive
ordering between X and Y is replaced by either the excess wealth order or the location
independent riskier order. It is shown in Section 2 that X ≤ew Y implies Xn:n − Xk:n ≤icx Yn:n −

Yk:n for 1 ≤ k ≤ n − 1. A parallel result is proved in the case of the location independent riskier
order. In particular, we will notice that the sample ranges are ordered according to the increasing
convex order when the parent distributions are ordered according to the excess wealth order or
the location independent riskier order. Some applications of these two results in the theory of
reliability and business auction models are presented in Sections 2 and 3.

For the sake of convenience, throughout this note, the term increasing is used for monotone
nondecreasing and decreasing is used for monotone non-decreasing. It is assumed in the sequel
that all random variables involved are absolutely continuous and expectations exist when used.

2. Main results

The main results of this note are contained in the next two theorems.

Theorem 3. If X ≤RS Y , then,

Xn:n − Xk:n ≤icx Yn:n − Yk:n, for k = 0, 1, . . . , n − 1. (8)

Proof. The case k = 0 is proved in Kochar et al. [11]. Note that, for 1 ≤ r < s ≤ n, the
distribution Xs:n given Xr :n = x is the same as that of the (s − r)-th order statistic in a random
sample of size (n − r) from a distribution with pdf f (y)/F̄(x) for y ≥ x . The survival function
of Xn:n − Xk:n is

H̄F (y) = P[Xn:n − Xk:n ≥ y]

=

∫
∞

0
P[Xn:n − Xk:n ≥ y|Xk:n = x] dFk:n(x)

= C(k, n)

∫
∞

0

[
1 −

{
F̄(x) − F̄(x + y)

F̄(x)

}n−k]
Fk−1(x)F̄n−k(x) dF(x)

= C(k, n)

∫
∞

0

[
F̄n−k(x) −

{
F̄(x) − F̄(x + y)

}n−k
]

Fk−1(x) dF(x)

= C(k, n)

∫ 1

0
pk−1

[
(1 − p)n−k

− {F(y + F−1(p)) − p}
n−k

]
dp,

where C(k, n) is a constant.
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We have to prove that under the assumption of X ≤RS Y , for any t ,∫
∞

t
H̄F (y)dy ≤

∫
∞

t
H̄G(y) dy. (9)

By the characterization (4), X ≤RS Y is equivalent to∫
∞

t

[
F

(
y + F−1(p)

)
− G

(
y + G−1(p)

)]
dy ≥ 0.

Since

h(y, p) =

n−k−1∑
i=0

[
F

(
y + F−1(p)

)
− p

]i [
G

(
y + G−1(p)

)
− p

]n−k−1−i

is nonnegative and increasing in y for any fixed p ∈ (0, 1), by Lemma 7.1(a) of Barlow and
Proschan [1], it holds that for any t and p ∈ (0, 1),∫

∞

t

[
F

(
y + F−1(p)

)
− G

(
y + G−1(p)

)]
h(y, p) dy ≥ 0.

That is,∫
∞

t

{[
F

(
y + F−1(p)

)
− p

]n−k
−

[
G

(
y + G−1(p)

)
− p

]n−k
}

dy ≥ 0.

Thus, ∫ 1

0
pk−1

∫
∞

t

{[
F

(
y + F−1(p)

)
− p

]n−k
−

[
G

(
y + G−1(p)

)
− p

]n−k
}

dy dp ≥ 0.

Interchanging the order of integration, this becomes, for all t ,∫
∞

t

∫ 1

0
pk−1

{[
F

(
y + F−1(p)

)
− p

]n−k
−

[
G

(
y + G−1(p)

)
− p

]n−k
}

dp dy ≥ 0,

which is equivalent to∫
∞

t

∫ 1

0

{
(1 − p)n−k

−

[
F

(
y + F−1(p)

)
− p

]n−k
}

pk−1 dp dy

≤

∫
∞

t

∫ 1

0

{
(1 − p)n−k

−

[
G

(
y + G−1(p)

)
− p

]n−k
}

pk−1 dp dy,

which in turn is equivalent to (9). This proves the desired result. �

As observed in Belzunce [4] and Fagiuoli et al. [7],

X ≤lir Y if and only if −X ≤RS −Y.

By Theorem 3, if X ≤lir Y , we have, for 1 ≤ k ≤ n,

(−X)n:n − (−X)k−1:n ≤icx(−Y )n:n − (−Y )k−1:n .

Since (−X)n:n − (−X)k:n
st
= Xn−k+1:n − X1:n , for all 1 ≤ k ≤ n, the next result parallel to

Theorem 3 follows immediately.
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Theorem 4. If X ≤lir Y , then,

Xk:n − X1:n ≤icx Yk:n − Y1:n, for k = 2, . . . , n. (10)

Specifically, setting k = 1 and k = n in (8) and (10), respectively, we immediately have the
following corollary.

Corollary 5. If X ≤RS Y or X ≤lir Y , then, Xn:n − X1:n ≤icx Yn:n − Y1:n for n ≥ 1.

Recall that X is NBUE (new better than used in expectation) if and only if X ≤ew Y , where
Y is exponential with the same mean as that of X (see Belzunce, [4]). It follows directly from
Theorem 3 that, if X1, . . . , Xn is a random sample from a distribution which is NBUE, then,

E[Xn:n − Xk:n] ≤

[
1 + · · · +

1
n − k

]
E[X ], for any 1 ≤ k ≤ n − 1.

In the literature on applied probability and statistics, many authors have examined the effect
of relative aging of two distributions on the variability of their sample observations. See for
example, Barlow and Proschan [1] and Kochar and Wiens [10], among others. Recall that X is
said to be star-shaped with respect to Y and denoted by X ≤∗ Y if G−1 F(t)/t is increasing in
t . In this case we also say that X is more IFRA (increasing failure rate average) than Y . For
the properties of star-shaped ordering, please refer to Barlow and Proschan [1] and Müller and
Stoyan [16]. Bartoszewicz [3] claimed in Corollary 2 that

X ≤∗ Y H⇒
E[Xn:n − X1:n]

E[X1]
≤

E[Yn:n − Y1:n]

E[Y1]
. (11)

Further, Li and Zuo [14] successfully relaxed the star-shaped ordering assumption in (11) to the
NBUE (new better than used in expectation) ordering X ≤nbue Y [10]. Note that star ordering
implies NBUE ordering. Taking into account the fact that

X ≤nbue Y ⇐⇒
X

E[X ]
≤RS

Y

E[Y ]
,

(see [11]), the next corollary follows directly from Theorem 3 and thus presents a more general
version of the moment inequality in (11).

Corollary 6. X ≤nbue Y H⇒
Xn:n−Xk:n

E[X ]
≤icx

Yn:n−Yk:n
E[Y ]

, for all 1 ≤ k ≤ n − 1.

Another useful notion of variability is the dilation order, which was studied in Belzunce
et al. [5]. X is said to be smaller than Y in the dilation order (denoted by X ≤dil Y ), if
Eφ(X − EX) ≤ Eφ(Y − EY ) for all convex functions φ. Readers can refer to Fagiuoli et al. [7]
for other details. In particular, they have shown that X ≤ew Y H⇒ X ≤dil Y , from which one can
prove that if the supports of X and Y are bounded from below and `X , `Y , their left end points
of the supports satisfy `X ≤ `Y , then,

X ≤ew Y H⇒ X ≤icx Y. (12)

On the other hand, Fagiuoli et al. [7] proved that

X ≤lir Y H⇒ X ≤dil Y. (13)
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In view of (12) and (13), one may wonder whether Theorems 3 and 4 are still valid with the
excess wealth order and the location independent riskier order replaced by the increasing convex
order and the dilation order, respectively. The following example gives a negative answer.

Example 7 (Shaked and Shanthikumar [20]). For a fixed ε ∈ (0, 1
3 ) and a number M ≥ 2, let

X assign probability masses ε, 2
3 and 1

3 − ε at the points 0, 1 and M , respectively. Let Y assign
probability masses 1

3 + ε, 1
3 and 1

3 − ε at the points 0, 2 and M , respectively. It is obvious that
E[X ] = E[Y ]. In Example 3.9 [20], it is stated that X ≤cx Y but X 6≤RS Y for larger number M .
Direct evaluation also reveals that X ≤dil Y .

It can be easily evaluated that∫
∞

0
F2(x)F̄(x) dx = ε2(1 − ε) +

(
2
3

+ ε

)2 (
1
3

− ε

)
(M − 1),∫

∞

0
G2(x)Ḡ(x) dx = 2ε

(
1
3

+ ε

)2

+

(
2
3

+ ε

)2 (
1
3

− ε

)
(M − 2).

Then,

E(Y3:3 − Y2:3) − E(X3:3 − X2:3) = −
4
9

+
2
3
ε + 4ε2

+ 12ε3,

which is negative for smaller ε ≥ 0. So, neither the convex order nor the increasing convex order
imply (8).

On the other hand,∫
∞

0
F(x)F̄2(x) dx = ε(1 − ε)2

+

(
2
3

+ ε

) (
1
3

− ε

)2

(M − 1),∫
∞

0
G(x)Ḡ2(x) dx = 2

(
1
3

+ ε

) (
2
3

− ε

)2

+

(
2
3

+ ε

) (
1
3

− ε

)2

(M − 2).

Then, as ε →
1
3 ,

E(Y2:3 − Y1:3) − E(X2:3 − X1:3) =
2
3

− ε − 6ε2
+ 6ε3

→ −
1
9
.

As a result, for some ε near 1
3 , the above difference may be negative. That is, the dilation order

X ≤dil Y is not a sufficient condition for (10) to hold. �

3. An application in auction theory

In an auction with a setup in which a seller and a number of buyers gather to the auction of
some good, all bidders respectively submit their own bids for the good, which are known only to
themselves. The most favorable one will be awarded the good at a price that is some function of
the submitted bids. Let X1, . . . , Xn be the sample of bidders’ valuations. If prices are bid in an
ascending sequence by individual bidders until only one bidder remains, the highest one, and the
price paid by the winner is the (n − k + 1)-th largest price reached in the sequence, this is called
a k-price buyer’s auction. The rent of the winner, which is the difference between the largest
price reached and the k-th largest price reached from bidders, can be characterized as the sample
spacing Xn:n − Xk:n . If the prices are bid in an descending sequence by individual bidders until
only one bidder remains, the lowest bidder, who is awarded the good at a price corresponding to
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the k-th largest price reached in the sequence, this is called a k-price reverse auction. The rent of
the winner is then the sample spacing Xk:n − X1:n , the difference between the k-th smallest price
and the smallest one from bidders.

Typically, the first price auction with k = 1 and the second price auction with k = 2 are
very popular in practical situations. Monderer and Tennenholtz [15] suggested that such auctions
may play an important role in the new economics evolving in the internet and are widely used
as a selling mechanism for relatively cheap items like TV sets or computer products. Paul and
Gutierrez [18] (Theorem 4, 2004) proved that, with the assumption of E[X ] = E[Y ],

X ≤∗ Y H⇒ E[Xk:n − Xk−1:n] ≤ E[Yk:n − Yk−1:n], k = 1, 2, . . . , n,

and hence

E[Xk:n − X1:n] ≤ E[Yk:n − Y1:n], E[Xn:n − Xk:n] ≤ E[Yn:n − Yk:n].

This claims that an increase of the bid in the sense of star-shaped order will result in an increase
of the expected winner’s rent in both the k-price buyer’s auction and the k-price reverse auction.
Recently, Li [12] further showed that

X ≤RS Y H⇒ E[Xn:n − Xn−1:n] ≤ E[Yn:n − Yn−1:n],

which states that in the second price buyer’s auction an increase of the bid in the sense of the
right spread order results in an increase in the expected winner’s rent.

According to Theorems 3 and 4 in Section 2, we draw the stronger conclusions that in a k-
price buyer’s auction, an increase of the bid in the sense of excess wealth order will result in an
increase of the winner’s rent in the sense of increasing convex order. And in a k-price reverse
auction, an increase of the bid in the sense of the location independent riskier order will result in
an increase of the winner’s rent in the sense of increasing convex order as well.
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