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Abstract

Let X i:n denote the ith order statistic of a random sample of size n from a continuous distribution with cdf F. Sufficient

conditions are obtained on F so that X j:mp%X i:n (hence X j:mpLorenzX i:n) for ipj and n� iXm� j.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Star ordering; Dispersive ordering; Hazard rate; Reverse hazard rate
1. Introduction

Both in reliability theory and economics we deal with probability distributions which are basically
skewed on the positive part of the real line. To compare the relative aging of two components or
systems, many concepts have been introduced in the reliability literature which partially order the
various probability distributions. There seems to be a close connection between these partial orders in
the reliability theory with those used in the economics literature to compare income inequalities. Some
of the reliability concepts have direct interpretations in the economics context, but others need further
investigation.

A component or system with exponential life distribution does not age with time in the sense that a
used component is as good as a new one irrespective of its age. In the reliability literature exponential
distribution is taken as bench mark and the relative aging of any component or system is compared with it.
Several partial orderings, with varying degree of strength, have been proposed in the literature to compare the
relative aging of two arbitrary life distributions when none of them is necessarily exponential. See Kochar and
Weins (1987) and Kochar (1989) for details. In this note we consider star-ordering (also known as more IFRA
ordering).

Let X and Y be two nonnegative random variables with survival function F̄ and Ḡ, and distribution
functions F and G, respectively. Let the corresponding density functions be denoted by f and g, and their
failure (hazard) rates be denoted by rF ¼ f =F̄ and rG ¼ g=Ḡ, respectively.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Definition 1.1. F is said to be more IFRA than G or F star-ordered with respect to G (written as Fp%G or
Xp%Y ) if

G�1F ðxÞ is star�shaped

3
G�1F ðxÞ

x
" x

3
G�1ðuÞ

F�1ðuÞ
" u 2 ð0; 1Þ. ð1:1Þ

The average failure of F at x is

r̄F ðxÞ ¼
1

x

Z x

0

rF ðtÞdt ¼
� ln F̄ ðxÞ

x
.

Thus Fp%G can be interpreted in terms of average failure rates as

r̄F ðF
�1ðuÞÞ

r̄GðG
�1ðuÞÞ

" u 2 ð0; 1Þ.

Note that F is an IFRA distribution only if F is star-ordered with respect to exponential distribution.

One of the most frequently used devices to describe and compare inequality in income or wealth distribution
is the Lorenz curve. Let the random variable X denote the income of an individual in a population with
distribution function F and mean mF . The Lorenz curve of X is defined as

LF ðpÞ ¼

R p

0
F�1ðuÞdu

mF

; p 2 ½0; 1�. (1.2)

A Lorenz curve LF ðpÞ denotes the fraction of the total income that the poorest p proportion of the
population posses. If every one in the population has the same income, the Lorenz curve would be the
diagonal line y ¼ x in the unit square. The further down the Lorenz curve is from the diagonal line, the more is
the disparity (inequality) among the incomes. Lorenz curves are also used to compare the amount of inequality
(in incomes) among different populations.

Definition 1.2. F is said to be smaller than G in the Lorenz order (denoted by FpLorenzG) if

LF ðpÞXLGðpÞ for all p 2 ½0; 1�. (1.3)

If FpLorenzG, then F exhibits less inequality than G. It can be shown that

FpLorenzG)
sF

mF

� �2

p
sG

mG

� �2

.

Thus Lorenz ordering provides a scale invariant variability ordering among nonnegative random variables.
For a comprehensive discussion on Lorenz ordering, see Arnold (1987). Assuming that the two populations
have equal means, Chandra and Singapurwalla (1981) proved that

Fp%G) FpLorenzG.

Klefsjo (1984) proved this connection between star ordering and Lorenz ordering without making any
restriction on the means of the two distributions. In fact, he proved that Fp%G implies

LGðpÞ

LF ðpÞ
increasing in p 2 ½0; 1�, (1.4)

which in turn implies LGðpÞpLF ðpÞ for p 2 ½0; 1�.

Order statistics arise naturally in many branches of statistics. In the reliability theory, they appear as
lifetimes of k-out-of-n systems. It is but natural to study their distributional properties. Many authors have
studied various types of variability orders among order statistics. Whereas Kim and David (1990) established
that the variances of the successive order statistics of a random sample from a decreasing failure rate (DFR)
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distribution are increasing, Kochar (1996) strengthened this result to dispersive ordering (defined in the next
section). Khaledi and Kochar (2000) further extended this work to order statistics from different samples and
distributions. Arnold and Villasenor (1989), Arnold and Nagaraja (1991), Wilfling (1996), and Kleiber (2002),
among others, studied Lorenz order relations between order statistics from uniform and other distributions. In
particular, Arnold and Villasenor (1989) proved the following result.

Theorem 1.1. Let Ui:n denote the ith order statistic of a random sample of size n from a uniform distribution over

ð0; 1Þ, i ¼ 1; . . . ; n. Then
(a)
 Uiþ1:npLorenzUi:n, for all ipn� 1,

(b)
 Ui:npLorenzUi:nþ1, for all ipnþ 1,

(c)
 Un�iþ1:nþ1pLorenzUn�i:n, for all ipn,

(d)
 Unþ2:2nþ3pLorenzUnþ1:2nþ1, for all n.
The last inequality may be described as ‘‘sample medians exhibit less variability as sample size increases’’.
Arnold and Villasenor (1989) wonder about the conditions on i, j, m and n under which

Uj:mpLorenzUi:n

holds.

We answer this question in Theorem 2.2 in the next section where we find sufficient conditions on the parent
distribution F under which X j:mp%X i:n holds. Many of the previously known results follow from this general
result as particular cases.

2. Main results

As mentioned in Shaked and Shanthikumar (1994), there is an intimate relation between star ordering and
dispersive ordering, a basic concept for comparing variability or spread between two probability distributions.
X is said to be less dispersed than Y, written as XpdispY , if

F�1ðbÞ � F�1ðaÞpG�1ðbÞ � G�1ðaÞ for all 0oapbo1.

It is easy to prove that for nonnegative random variables X and Y,

Xp%Y 3 lnðX Þpdisp lnðY Þ.

Jeon et al. (2006) proved the following result.

Theorem 2.1. Let Ui:n denote the ith order statistic of a random sample of size n from a uniform distribution over

ð0; 1Þ, i ¼ 1; . . . ; n. Then

Uj:mp%Ui:n for ipj and n� iXm� j. (2.1)

Can Theorem 2.1 be extended to other distributions? To answer this question we use the following lemma.

Lemma 2.1. Let f be a star-shaped function on ½0; 1Þ such that fðxÞpx for all xX0. Let c be a differentiable

function from ½0;1Þ to ½0; 1� such that

x
c0ðxÞ
cðxÞ

is decreasing in x. (2.2)

Then the function

cfc�1ðuÞ is also star�shaped.

Proof. Note that f is star-shaped if and only if

f0ðxÞX
fðxÞ

x
for all x40. (2.3)
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We have to prove that under the given conditions,

d

du
cfc�1ðuÞX

cfc�1ðuÞ
u

for all uX0.

That is,

c0fc�1ðuÞf0c�1ðuÞ

c0c�1ðuÞ
X

cfc�1ðuÞ
u

. (2.4)

Now the left-hand side of (2.4) is at least

c0fc�1ðuÞ

c0c�1ðuÞ
�
fc�1ðuÞ

c�1ðuÞ
,

because of (2.3).
Thus to establish the required result, it is sufficient to prove that

c0fc�1ðuÞ

c0c�1ðuÞ
�
fc�1ðuÞ

c�1ðuÞ
X

cfc�1ðuÞ
u

. (2.5)

Since by assumption (2.2),

c0ðxÞ
cðxÞ

x is decreasing in x and fðxÞpx,

it follows that

c0fc�1ðuÞ

cfc�1ðuÞ
� fc�1ðuÞX

c0c�1ðuÞ
u

� c�1ðuÞ,

or

c0fc�1ðuÞ

c0c�1ðuÞ
�
fc�1ðuÞ

c�1ðuÞ
X

cfc�1ðuÞ
u

.

This proves the required inequality (2.5) and hence the result. &

The reverse hazard rate ~rF of a random variable X with pdf f and cdf F is defined as ~rF ðxÞ ¼ f ðxÞ=F ðxÞ.
In the next theorem we extend the results of Theorem 2.1 to distributions satisfying condition (2.6)
below.

Theorem 2.2. For i ¼ 1; . . . ; n, let X i : n denote the ith order statistic of a random sample of size n from a

distribution with reverse hazard rate ~rF . If

x~rF ðxÞ is increasing in x, (2.6)

then for ipj and n� iXm� j,

X j:mp%X i:n. (2.7)

Proof. The distribution function of X i:n is F i:nðxÞ ¼ Bi:nF ðxÞ, where

Bi:nðpÞ ¼ n
n� 1

i � 1

� �Z p

0

ui�1ð1� uÞn�i du.

We have to prove that under condition (2.6),

F�1i:n F j:m ¼ F�1 B�1i:n Bj:m

� �
F�1 is star�shaped.
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By Theorem 2.1, for ipj and n� iXm� j, the function f ¼ B�1i : nBj : m is star-shaped. By Lemma 2.1, a
sufficient condition for (2.7) is that the function cðuÞ ¼ F�1ðuÞ satisfies condition (2.2). That is,

u
ðd=duÞF�1ðuÞ

F�1ðuÞ
¼

u

f F�1ðuÞ
� �

F�1ðuÞ
¼ F�1ðuÞ~rF ðF

�1ðuÞ
� ��1

is decreasing in u,

which is equivalent to (2.6). &

Remark. Arnold and Villasenor (1989) mention (2.6) as a sufficient condition for the relation

X iþ1:npLorenzX i:n

to hold. We have a more general result.

Theorem 2.3. For i ¼ 1; . . . ; n, let X i:n denote the ith order statistic of a random sample of size n from a

distribution with its hazard rate rF ðxÞ ¼ f ðxÞ=F̄ ðxÞ satisfying the condition,

xrF ðxÞ is decreasing in x. (2.8)

Then

X i:np%X j:m for ipj and n� iXm� j. (2.9)

Proof. Khaledi and Kochar (2000) proved that a sufficient condition for X i:npdispX j:m for ipj

and n� iXm� j is that rF ðxÞ is decreasing. Since Xp%Y3 lnðX Þpdisp lnðY Þ, it follows that a sufficient
condition for (2.9) is that the random variable lnðX Þ has a DFR. It is easy to verify that the hazard rate of
lnðX Þ is

e y f ðe yÞ

F̄ ðe yÞ
,

which is decreasing in y if and only if condition (2.8) is satisfied. &

The above theorems immediately lead to the following result because of the relation between star-ordering
and Lorenz ordering.

Corollary 2.1. If for i ¼ 1; . . . ; n, X i:n denotes the ith order statistic of a random sample of size n from a

distribution satisfying:
(a)
 condition (2.6), then

X j:mpLorenzX i:n

for ipj and n� iXm� j.

(b)
 condition (2.8), then

X j:mXLorenzX i:n

for ipj and n� iXm� j.
Example 2.1. (2.6) is satisfied by the power function distribution with distribution function, FX ðxÞ ¼ ½x=c�g,
opxpc, g40. Therefore, the conclusions of Theorem 2.2 and Corollary 2.1(a) hold for this distribution.
Arnold and Villasenor (1989) also conjectured that for this distribution,

X n�jþ1:nþ1pLorenzX n�j:n for every 1pjpn.

Its proof immediately follows from Theorem 2.2 and Corollary 2.1.

Example 2.2. Let X has Pareto distribution with F ðxÞ ¼ 1� ðx=cÞ�a, x4c, a41. Condition (2.8) is
satisfied by this distribution. Hence the conclusions of Theorem 2.3 and Corollary 2.1(b) hold for this
distribution.
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