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Abstract: Suppose X,, , X,, are independent random variables of continuous type with proportional hazard (or failure) rates. Let 

Xcr, denote the rth order statistic and let I(,, = i if X, = Xcr,. It is proved that X,‘s are identically distributed if and only if Xcr, 

and I,,, are independent for some r E (2,. , n). The second characterization is in terms of order statistics from subsamples. 
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1. Introduction and the main result 

Suppose Xi,. . . , X,, are independent absolutely continuous random variables with f,, Z$ 
(= 1 - Fi) denoting, respectively, the probability density function, the distribution function ,.~ .I _.. \ 

and Fi 
and the 

survival function of Xi, i = 1,. . . , n. We shall use the notation ri(.) for the hazard (or failure) rate of X,. 
For 1 G r < n, let XCr, denote the rth order statistic and let I,,, = i if XCr, = Xi. Since the observations 

are assumed to be of continuous type, the functions Z(,,‘s are uniquely defined with probability one. 
XI’s are said to have proportional hazard rates if there exist positive constants yi, i = 1,. . . , n, such 

that 

ri(x) =yir,(x) for all x and i=2,...,n, (1.1) 

or equivalently, if the survival functions satisfy the relations 

c(.) =pT’(*) for all x and i=2,...,n. (1.2) 

Xi’s are said to belong to the proportional hazard family if they satisfy (1.1). This family of 
distributions has many interesting properties. The following result due to Armitage (1959), Allen (1963) 
and Sethuraman (1965) is very useful in the theory of competing risks. 

Theorem 1.1. Xi’s belong to the proportional hazard family (1.1) if and only if Xc,, and I,,, are 
independent. q 

In the context of competing risks theory, Theorem 1.1 has the following interpretation. If the n 
independent risks are acting simultaneously on a subject or a system in an effort to fail it then the time to 
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failure is independent of the cause of failure if and only if their lifetimes belong to the proportional 
hazard family. 

In many applications, it is of interest to know whether the n different risks are equally fatal, that is, 
whether the n random variables Xi’s are identically distributed. The following result gives a necessary 
and sufficient condition for the homogeneity of Xi’s in the proportional hazard family. 

Theorem 1.2. Let X,, . . . , X,, be independent random variables with proportional hazard rates. Then 
X 1,. . . , X,, are identically distributed if and only ifXCl, and I,,, are independent for some r E (2,. . . , n). 

To prove the main theorem we shall need the following lemma. 

Lemma 1.3. Let cl,. . . , c, be real numbers and let 0 < d, < . . . < d,. Suppose 

giud;=O, O<U=Gl. 

Then ci = 0, i = 1, 2,. . . , n. 

Proof. Let 0 < u1 < . . . <u, < 1. Then 

tciufi=O, j=l,2 ,..., n. 

Cl 0 

Ill [:I = . . 

c, 0 

(1.3) 

The n x n matrix appearing on the left hand side of (1.3) is nonsingular (see, for example, Polya and 
Szego, 1976, p. 46). Therefore ci = 0, i = 1, 2,. . . , n, and the proof is complete. 0 

Proof of Theorem 1.2. It is obvious that if X,, . . . , X,, are identically distributed then XCr, and I,,, are 
independent for any r E (1,. . . , n). 

To prove the converse, suppose that XCr, is independent of I,,, for some r E (2,. . . , n). Then there 
exist positive constants /3r = 1, &, . . . , /3, such that 

p[ I,,, = i, Xr, Gt] =piP[l(,,= 1, XCr,=gt] forall t,i=1,2 ,..., n. (1.4) 

Let A$=(l, 2,..., n)\(i). Differentiating (1.4) with respect to t and after some simple calculations it 
follows that for any t E (-co, ~1, 

$h(‘) C (1.5) 

I SCN,,ISI=~-I jES 

is constant in i for i = 1, 2,. . . , n. 
From (1.2) and (1.5) we see that for any t E C-q ~01, 

(1.6) 

is constant in i for i = 1, 2,. . . , n. 
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Let u = F,(t). Then the coefficient of uyl+ “’ +n in (1.6) is 

Yi n-1 

pi ( 1 n-r (-v-‘* (1.7) 

By Lemma 1.3, (1.7) must be constant in i for i = 1, 2,. . . , n and hence r/Pi = yj/pj, i + j. 
Now divide the expression in 0.6) by (~r/&KI~=r~(f) to conclude that for any t E c-03, 03) which 

satisfies 0 < F,(t) < 1, 

c n ( FLYJ( t) - 1) (1.8) 
ScN,,ISI=r-1 i=S 

is constant in i for i = 1, 2,. . . , n. 
Equating (1.8) for i = 1, 2, 

c I-I (F;Y’(t) - 1) = c (1.9) 
SCN,,ISI=~-1 jcS 

n (F,Y’(t) - 1). 
S~N,,isi=~-1 jsS 

If S cN, n N2, then the corresponding term occurs on either side of (1.9) and hence can be cancelled. 
Thus 

c I-I (F,“(t) - 1) = c 
~ESCN,,ISI=~-~ j=S 

I-I (F,Y’(t) - 1). 
IESCN,,ISI=~-I isS 

This leads to 

( FLYZ( t) - 1) c n (F,Y’(t) - 1) 
ScN,nN,,ISI=r-2jsS 

= (qY’(t) - 1) c n (FIY’(t) - 1) 
ScNInNz,lS =r-2 jEs 

and therefore (Fly*(t) - 1) = (Fey’(t) - 1). It follows that X,, X, are identically distributed. Similarly it 
can be shown that X, and Xi are identically distributed and the proof is complete. 0 

A similar result can be obtained for the dual family of distributions satisfying 

Fi(X) =FP(a), i= 2 )...) n, (1.10) 

where cxi’s are positive constants. It can be seen that (1.10) holds if and only if 

Fi(x) =cQ,(x) for all x, i=2 ,..., n, (1.11) 

where fi =fJl;;: denotes the ‘survival rate’ of Xi. It has the following interpretation. Given that a unit 
with survival rate Fi has failed at time t, the probability that it survived upto time t - S is approximately 
equal to SFJt). We call the family of distributions satisfying (1.10) as the ‘proportional survival rate’ 
family. It is well known that XCn, and 4,) are independent if and only if X,, . . . , X, belong to the 
proportional survival rate family. We have the following result whose proof is similar to that of Theorem 
1.2. 

Theorem 1.4. Let X,, . . . , X,, be independent random variables with proportional survival rates. Then 
X 1,“‘, X,, are identically distributed if and only if XCr, and I,,, are independent for some r E {l, . . . , n - 1). 
0 

If Xi’s are independent and identically distributed then it is immediate that XCr, is independent of 
I,,,, for any r E (1,. . . , n}. Theorem 1.3 and Theorem 1.4 prove that the independence of XCr, and I,,,, 
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r E 11, n} and that of 

‘Ci)* 

The case of dependent 

Now we consider the 
c.d.f. and the survival 
1.1 as follows: 

Theorem 1.5. (a) Xo, 
that 

STATISTICS & PROBABILITY LETTERS 18June1993 

Xcs, and I,,,, s E 0,. . . , n}\r imply the independence of all other pairs XCj, and 

variables 

case of dependent variables. Let F(t,, . . . , t,> and F(t,, . . . , t,) denote the joint 
function of (X,, . . . , X,). Kochar and Proschan (1991) have generalized Theorem 

and I,,, are independent if and only if there exist positive constants yz, . . . , y,, such 

gi(t)=yigl(t) foralZt,i=2 ,..., n, 

where 

gi(t) = - l (a/ati)F(tl,...,t,) 
F(t, I ,...,t,) ’ 

j=l,2 n, ,.-., 
‘, = t 

is the cause specific hazard rate corresponding to the ith cause. 

(b) X@, and I(,,) are independent if and only if there exist positive constants y;, 

g*(t)=y,*gT(t) forallt, i=1,2 ,..., 12, 

where 

g?(t) = 
i 

(a/ati>F(tl,...,t,) 

F(t I 1,...,tJ ’ 
j=1,2 n. 0 >..‘, 

!, = t 

(1.12) 

(1.13) 

y,* such that 

(1.14) 

(1.15) 

It can be seen that if the components of X = (Xi,. . . , X,) are exchangeable, that is, (Xi,. . . , X,) = dist 
<xir,. . .) Xi,> for all permutations (i,,. . .,i,) of 11, 2,. . . , n}, then (1.12) and (1.14) obviously hold 
implying thereby the independence of Xo, and I,,, and that of XCn, and I(,). The following counter 
example shows that the converse analogous to Theorem 1.2 does not hold for the dependent case. 

Example 1.1. For a > 0, let the joint density of Xi and X, be 

1 

1 ifO<x,<x,<a, 

f(x17 x2) = l/a ifO<x,<x,<a, 

arbitrary if u=v, 

where a and (Y are related by 

a={- 

It is easy to see that (1.12) and (1.14) hold implying, respectively, the independence of Xo, and I,,, and 
that of XCn, and I,,,. However, X, and X, are not exchangeable. 

2. A characterization in terms of order statistics from sub-samples of size II - 1 

We assume throughout this section that X,, . . . , X,, are independent random variables of continuous type 
with common support T. We also keep r fixed, 1 =S r G n - 1, throughout the subsequent discussion. 
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Denote by Xl:,’ the rth order statistic corresponding to the random variabels Xi,. . . , X,_ I, X,, I,. . . , X,, 
and let F$ denote the distribution function of Xcr,. @) The main result of this section is the following. 

Theorem 2.1. The random variables X,, . . . , X,, are identically distributed if and only if the n random 
variables X:f:, . . . , X$!!j have the same distribution. 

We will need a preliminary result. The following notation will be used. Recall that Ni = 11,. . . , n) \{i}. 
Let Nij denote (1,. . . , n}\{i, j} and let nk(x) denote the probability that exactly k of the y1- 2 random 

variables Xi,, . . . , XinmL are less than x where Ii,, . . . ,in_2} =Nii. We set TO(X) G 1. 

Lemma 2.2. Let i, j E (1,. . . , n), i # j. Then 

F,:;(x) -F&‘;(x) =v,-W[Fj(4 -F,(x)]. 

Proof. We have 

n-1 

F(q( x) = c c I-IW) J&F;(x) 
k=r ScN,,ISl=k IEs I 

ScA’,,,ISI=k-1 tES 

= c [4(x)Tk-l(x) +&x)?)k(x)] +F,(xhn-2(x). 
k=r 

Similarly 

n-2 

F::;(X) = C {Fi(‘)“7-I(X) ‘auk} +Fi(X)rIn-2(X). 
k=r 

Subtracting (2.2) from (2.1) we get 

F&!,‘(x) -F;;;(x) = (q(X) -F@))( fli2(?lk-i(x) -qk(X))+t77,-2(X) 

k=r 

=17,-1(-4(F;(x) -F,(x)), 
and the proof is complete. 0 

(2.1) 

(2.2) 

Proof of Theorem 2.1. The “only if” part is obvious. To prove the “if” part, let i, j E (1, 2,. . . , n), i #j. If 
x E T, then n,_,(x) > 0 and since F$!$x) = F$‘/(x), we conclude from Lemma 2.2 that Fi(x) = c.(x). 
Similarly we can prove that F,(x) = . . . = F,(x) for all x E T. q 

Remarks. 1. We note the following consequence of Lemma 2.2. Let i, j E 11,. . . , n), i f j. Then 

F;$( x) -F;‘;(x) 2 0 r < according as 5(x) - Fi( x) $0. 

In particular Xi 2 St Xj, if and only if X$ Q St X$ where the superscript ‘st’ denotes stochastic ordering. 
2. As shown by Bapat and Beg (1989), for fixed x and n the nk’s form a log-concave sequence. 
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3. It follows clearly from Lemma 2.2 that E[ Xl:,‘] - E[X# > E(Xj) - E(X,). A similar inequality 
holds for other moments. 
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