On the 'triples test' for symmetry

Subhash C. Kochar
Indian Statistical Institute, New Delhi, India

Received November 1991
Revised January 1992

Abstract

Randles et al. (1980) and Davis and Quade (1978) independently proposed an asymptotically distribution-free test for testing symmetry about an unknown point. In this note, it has been shown that if X is convex ordered with respect to $-X$, then the one-sided test is consistent, thus solving an open problem of Randles et al. (1980).

Keywords: Symmetry, U-statistic, convex-ordering, nonparametric test.

1. Introduction

Let X_{1}, \ldots, X_{n} be a random sample of size n from a continuous distribution with cumulative distribution function F and density function f. A random variable X is said to be symmetric about θ if and only if $X-\theta$ and $\theta-X$ have the same distribution.

Randles, Fligner, Policello and Wolfe (1980) and Davis and Quade (1978) independently proposed an asymptotically distribution-free test for testing the symmetry of a random variable about an unknown point. Their test, which is commonly known as the 'triples test', is based on the U-statistic estimator $\hat{\eta}$ of the parameter

$$
\begin{align*}
\eta= & \operatorname{Pr}\left[X_{1}+X_{2}-2 X_{3}>0\right] \\
& -\operatorname{Pr}\left[X_{1}+X_{2}-2 X_{3}<0\right] \tag{1.1}
\end{align*}
$$

where X_{1}, X_{2} and X_{3} are three independent copies of X. Under the null hypothesis of symmetry (about an unknown point), $\eta=0$.

The above authors proposed the 'triples test' purely on heuristic grounds. Randles et al. (1980)

[^0]comment on page 169, "unfortunately, there is no apparent way to express simply the consistency condition that η be different from zero in terms of $F^{\prime \prime}$. We attempt to answer this question in the next section and give a general class of distributions for which η is different from zero.

2. The main result

We shall use the concept of convex ordering of distributions as introduced by van Zwet (1964).

Definition 2.1. Let $X(Y)$ be a random variable with distribution function $F(G)$. Then X is said to be convex ordered with respect to Y if
$G^{-1} F(x)$ is strictly convex on the support of F.

We write this as $X \prec^{c} Y$ or $F \prec^{c} G$. This partial ordering of distributions is location-scale invariant in the sense that $F={ }^{\mathrm{c}} G$ if and only if $F(x)$ $=G(\alpha x+\beta)$ for some constants α and β.

Ahmad and Kochar (1990) proved the following result:

Theorem 2.2. Let $X_{1}^{\prime}, X_{2}^{\prime}$ and $X_{3}^{\prime}\left(Y_{1}^{\prime}, Y_{2}^{\prime}, Y_{3}^{\prime}\right)$ be three independent copies of $X^{\prime}\left(Y^{\prime}\right)$ with distribution function $F(G)$ and let λ be any real number such that $0 \leqslant \lambda \leqslant 1$. Then $F \prec^{c} G$ implies

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}^{\prime}-\lambda X_{2}^{\prime}-\bar{\lambda} X_{3}^{\prime}<0\right] \\
& \quad<\operatorname{Pr}\left[Y_{1}^{\prime}-\lambda Y_{2}^{\prime}-\bar{\lambda} Y_{3}^{\prime}<0\right],
\end{aligned}
$$

where $\bar{\lambda}=1-\lambda$.
Specializing this result to $X^{\prime}=X-\theta$ and Y^{\prime} $=\theta-X$, we get the following corollary.

Corollary 2.3. Let $X-\theta<^{c} \theta-X$ (or equivalently, $X<^{\mathfrak{c}}-X$), then

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}-\lambda X_{2}-\bar{\lambda} X_{3}<0\right] \\
& \quad<\operatorname{Pr}\left[X_{1}-\lambda X_{2}-\bar{\lambda} X_{3}>0\right] .
\end{aligned}
$$

In particular, by taking $\lambda=\bar{\lambda}=\frac{1}{2}$, we find that $X<^{\text {c }}-X$ implies $\eta<0$.

Thus the test based on small values of $\hat{\eta}$ or its studentized version will be consistent for testing the null hypothesis

$\mathrm{H}_{0}: \quad X$ is symmetric

(about an unknown point θ)
against the one-sided alternative
$\mathrm{H}_{\mathrm{A}}: \quad X-\theta \prec^{\mathrm{c}} \theta-X$
(or equivalently, $X \prec^{\mathrm{c}}-X$).
It can be seen that the alternative H_{A} is equivalent to
$\frac{f\left[F^{-1}(1-u)\right]}{f\left[F^{-1}(u)\right]}$ nonincreasing in u
for $u \in(0,1)$.
The following are some important classes of distributions for which H_{A} holds.

Example 2.4. Let Y be a random variable symmetric about 0 and let, for some $c>0$,
$X_{\theta}= \begin{cases}Y+\theta & \text { if } Y<\theta, \\ Y / c+\theta & \text { if } Y \geqslant \theta .\end{cases}$
Then it can be seen that X_{θ} satisfies H_{A} for any real θ provided $c<1$.

Example 2.5. Let $g(\cdot)$ be a density function on $[0, \infty$). Define a new density function f by
$f(x)= \begin{cases}\frac{1}{2} g(-x) & \text { if } x \leqslant 0, \\ (1 /(2 c)) g(x / c) & \text { if } x>0,\end{cases}$
where $0<c<1$. Then H_{A} holds for such a distribution f for any arbitrary density function g on $[0, \infty)$.

Remarks. (1) It should be noted that $X<^{c}-X$ is not a necessary condition for $\eta<0$. Similarly, it can be shown that if $-X \prec^{c} X$ then $\eta>0$ and the test based on large values of $\hat{\eta}$ will be consistent for testing H_{0} against the alternative $-X<^{c}$ X.
(2) By taking different values of λ between 0 and 1 , one can obtain a class of asymptotically distribution-free tests for testing symmetry against H_{A}, thus generalizing the above test based on $\hat{\eta}$. However, we shall not pursue this matter further here.

References

Ahmad, I.A. and S.C. Kochar (1990), Testing for whether one distribution is more IFR than the other, Metrika 37, 45-58.
Davis, C.E. and D. Quade (1978), U-statistics for skewness and symmetry, Comm. Statist. - Theory Methods A 7, 413418.

Randles, R.H., M.A. Fligner, G.E. Policello and D.A. Wolfe (1980), An asymptotically distribution-free test for symmetry versus asymmetry, J. Amer. Statist. Assoc. 75, 168-172.
Zwet, W.R. van (1964), Convex Transformations of Random Variables (Math. Centrum, Amsterdam).

[^0]: Correspondence to: Prof. Subhash C. Kochar, Indian Statistical Institute, 7, SJS Sansanwal Marg, New Delhi 110016, India.

