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Abstract: Randles et al. (1980) and Davis and Quade (1978) independently proposed an asymptotically distribution-free test for 

testing symmetry about an unknown point. In this note, it has been shown that if X is convex ordered with respect to - X, then the 

one-sided test is consistent, thus solving an open problem of Randles et al. (1980). 
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1. Introduction 

Let X1,..., X, be a random sample of size IZ 
from a continuous distribution with cumulative 
distribution function F and density function f. A 
random variable X is said to be symmetric about 
0 if and only if X - 0 and 0 -X have the same 
distribution. 

Randles, Fligner, Policello and Wolfe (1980) 
and Davis and Quade (1978) independently pro- 
posed an asymptotically distribution-free test for 
testing the symmetry of a random variable about 
an unknown point. Their test, which is commonly 
known as the ‘triples test’, is based on the U-sta- 
tistic estimator +j of the parameter 

n=Pr[X1+XX2-2X3>0] 

-Pr[X,+X,-2X,<O] (1.1) 

where X,, X, and X3 are three independent 
copies of X. Under the null hypothesis of symme- 
try (about an unknown point), n = 0. 

The above authors proposed the ‘triples test’ 
purely on heuristic grounds. Randles et al. (1980) 
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comment on page 169, “unfortunately, there is no 
apparent way to express simply the consistency 
condition that n be different from zero in terms 
of F”. We attempt to answer this question in the 
next section and give a general class of distribu- 
tions for which 77 is different from zero. 

2. The main result 

We shall use the concept of c~nuex orden’ng of 
distributions as introduced by van Zwet (1964). 

Definition 2.1. Let X(Y) be a random variable 
with distribution function F(G). Then X is said 
to be convex ordered with respect to Y if 

G-‘F( x) is strictly convex on the support of F. 

(2.1) 

We write this as X +’ Y or F-xc G. This partial 
ordering of distributions is location-scale invari- 
ant in the sense that F =’ G if and only if F(x) 
= G(ax + p> for some constants cy and p. 

Ahmad and Kochar (1990) proved the follow- 
ing result: 
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Theorem 2.2. Let X,‘, X; and Xi (Y,‘, Yi, Yi;> be 
three independent copies of X ’ (Y ‘) with distribu- 
tion function F (G) and let h be any real number 
such that 0 < h < 1. Then F -c’ G implies 

Pr[X;-AX;-;iXi<O] 

< Pr[ rrr - AY,’ - hY,l < o] ) 

wherex=l-A. q 

Specializing this result to X’ =X - 0 and Y’ 
= 8 -X, we get the following corollary. 

Corollary 2.3. Let ‘X- 19 4 0 -X (or equiua- 
lently, X-C” -X), then 

Pr[X, -AX,-hX,<O] 

<Pr[X,-AX,-iX,>O]. 0 

In particular, by taking A = h = i, we find that 
X +’ -X implies n < 0. 

Thus the test based on small values of 5 or its 
studentized version will be consistent for testing 
the null hypothesis 

H,: X is symmetric 

(about an unknown point 0) 

against the one-sided alternative 

H,: x-e4e-x 
(or equivalently, X 4 - X) . 

It can be seen that the alternative H, is equiv- 
alent to 

f [F-l@ -41 

f [F-WI 
nonincreasing in u 

for u E (0, 1). 

The following are some important classes of 
distributions for which H, holds. 

Example 2.4. Let Y be a random variable sym- 
metric about 0 and let, for some c > 0, 

XC Y+0 
{ 

if Y<e, 
0 Y/c+e if Y>e. 

Then it can be seen that X, satisfies H, for any 
real 8 provided c < 1. 

Example 2.5. Let g( .> be a density function on 
[0, m). Define a new density function f by 

( 

tg< -x) 

f(x) = (1/(2c))g(x/c) 

if xG0, 

if x > 0, 

where 0 < c < 1. Then H, holds for such a distri- 
bution f for any arbitrary density function g on 
[O, 4. 

Remarks. (1) It should be noted that X <’ - X is 
not a necessary condition for 7 < 0. Similarly, it 
can be shown that if -X 4 X then n > 0 and 
the test based on large values of ;7 will be consis- 
tent for testing H, against the alternative -X4 
X. 

(2) By taking different values of A between 0 
and 1, one can obtain a class of asymptotically 
distribution-free tests for testing symmetry against 
H,, thus generalizing the above test based on 6. 
However, we shall not pursue this matter further 
here. 
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