tatistics & Probability Letters 7 (1989) 179-185

Received December 1987
Revised April 1988

.1. Introduction

‘Let X and Y be two random variables having
' absolutely continuous distribution  functions
| (d.f’s) F and G, respectively, with F~! and G~
| as their left continuous inverses.

j Definition 1.1. G is said to be more dispersed than
{ disp
- F, written F < G, if

¢ Y(B)-G (a)=F Y(B)-F !(a)
for0sa<pfB<1, (1.1)

e, if any two quantiles of G are at least as far
. apart as the corresponding quantiles of F.

The above definition is equivalent to saying
. that G~ 'F(x) — x is nondecreasing in x. Doksum
| (1969) calls this ordering as tail ordering.

. Let f and g denote the probability density
' functions of F and G, respectively. The failure
' (hazard) rate of F is defined as

: re(x)=f(x)/[1 - F(x)], F(x)<1.
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Differentiating G~ 'F(x) — x, we find that (1.1) is
equivalent to

g[G"(.u)]gf[F_‘(u)] forO<u<l. (1.2)
Equivalently,
relG Y (w)] <re[F'(u)] forO<u<1. (1.3)

The above several equivalent versions of disper-
sive ordering have been discussed by many authors
including Doksum (1969), Bickel and Lehmann
(1979), Oja (1981), Lewis and Thompson (1981),
and Shaked (1982). For positive random variables,
which are mainly applicable in reliability theory,
Deshpande and Kochar (1983), Bartoszewicz
(1986), and Ahmad, Alzaid, Bartoszewicz, and
Kochar (1986), have discussed relations between
dispersive ordering, star ordering, superadditive
ordering, and failure rate ordering.

Note that if F(x)—H((x 0,)/7m,) and G(x)
= H((x —6,)/n,), then F g G if and only if
M <732

It is possible sometimes to compare two distri-
butions F and G not necessarily belonging to the
same location-scale family. Doksum (1969) has

shown that for distributions symmetric about 0, if
F is ordered with respect to G in the sense of
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Lawrence (1975), i.e., G~ 'F(x)/x is nondecreas-
ing (nonincreasing) for x positive (negatwe) on

the support of F, and if g(0) <f(0), then F < G.

From this and the work of Rivest (1985), it fol-
lows that if 7, denotes the Student’s ¢ distribution

disp
with n degrees of freedom, then 7, < ¢,, for all

n > m. Bickel and Lehmann (1979) and Shaked
(1982) contain some more examples of pairs of
distributions which do not belong to the same
location-scale family but they are compatible
according to dispersive ordering.

We say that F is equwalent to G in the disper-
disp
sive ordering sense (F G) if and only 1f F <G

disp
and G < F. It is easy to see that F G is

equivalent to F(x)= G(x + @) for some 6 and all
real x.
In this paper, we dlscuss lhe problem of testing

the null hypothes;s Hy: F i against the alter-

native H,: F o4 G and F(x)# G(x+8). We pre-

sent test statistics for the two-sample case and also
for the paired-sample case. The tests prcsented are
based on consistent estimators of [f*(x)dx and
[g*(x) dx, where the integration is taken over the
whole real line whenever the limits are not given.

2. Asymptotically distribution-free test for disper-
sive ordering

. disp
Observe that in order to test Hy: F = G versus

disp
H,;: F < G and F(x)# G(x+8), one needs a
measure of deviation from the null hypothesis.
This will follow from the following lemma.

dis|
Lemma 2.1. If F<pG then [f*(x) dx >

/g*(x) dx, whenever the densities exist.

. disp *_ | .
Proof. Note that since F < G is equivalent to

F(F~ Y (u)>g(G Y (u)) for all 0<u<1, we get
f(x) > g(G™'F(x)), for all x and hence

[£(x) dF(x)> [8(G”
=fg(w)dG(w). O

'(F(x))) dF(x)
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Thus from the above lemma we use the follow-
ing measure of deviation from H:

A(F, G)=ff2(x)dx—fgz(x)dxd;fﬁf—ﬁa. _
(2.1) |

Note that under H,, A(F, G)=0 and under
H,, A(F, G)>0. Now, if we estimate A(F, G), '
then this estimate can be used as a test statistc
that rejects H, for large values. Thus we proceed
to do in two cases, two independent samples case
and the case of paired (dependent) observations.

(A) The two-sample problem: Let X,..., X
and Y,,...,Y, denote independent random sam- -
ples from F and G respectively. In order to esti- 4
mate 8 and 8; (thus estimate A(F, G)), we use |
the estimate proposed in Ahmad (1976), '

f=ma,) " £ TH(Z2) @2 i

i=1j=1

where k is a known pdf which is symmetric and -
bounded such that lim,, . |u|k(u)=0, and |
{a,} is a sequence of reals (called window size) -
such that a,, = 0 as m — co. In the same way we |
estimate 8; by :

o= [wn] " T LK

i=1 j=1

_y, .
) (23)
where {b,} is a sequence of reals such that b, ~0
as n — oo. Hence we estimate A(F, G) by: ;
A(F,G)=8:—&;. (2.4)

Bhattacharyya and Roussas (1969) proposed to.
estimate 8 by §; = [f*(x) dx where ;

fx) = Umay] ™" E k| .

i=1 Am

It is not difficult to see that the estimate &y is a
special case of 8y, since we can write

5= ffz(x) dx

~[ma,] " T Ek”’(

i=1i=1

where k®(u) is the convolution of k(u) with
itself. §
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. In order to provide an asymptotically distribu-
jon-free test statistic for Ho, we will discuss the
ssymptotic distribution of A(F, G) and present a
fonsistent estimate of its variance. This we do in
the next two theorems whose proofs are deferred
o the Appendix.

Theorem 2.1. Let v=min(m, n). If ma},—
o and ma’ — 0 (nb? - oo and nb; — 0) as v = oo,
if f(g) € L*(— o0, )), and if f(g) has bounded
second derivative, then as v = o,

Vo[A(F, G) - A(F, G)]

:L asymptotically normally distributed with mean 0
and variance o* given by

.-al=4{ff3(x) dx — (ff2(x) dx)2

2
+fg3(x) dx — (fgz(x) dx) }, (2.6)
From the above theorem, in order to perform

the test, one needs a consistent estimate of o”.
This we propose as follows:

=4{ffl(x) dE, (x) - (8;)°
+[£(x) 46,(x) - (8]

-1

+[n3b2]_‘
Y,-Y, Y.—¥
EEEE )
i=1j=11=1 n
-82. (2.7)
Theorem 2.2. If maZ — oo and nb} — oo as v —

o, and if f€ L*(— o0, o0) and g € L*(— o0, ),
then 6% — o? in probability as v = .

Thus under the conditions of the above two
theorems, an asymptotically distribution free test
for testing H, against H, is to reject H, if
VA(F, G)/é >z,, where z, is the (1—a)-th
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quantile of the standard normal distribution. This
test is obviously consistent for testing H,, against
H,. Under some additional conditions 6° con-
verges to o2 with probability one thus establishing
the strong consistency of 62, Precisely we have:

Proposition 2.1. If k is a function of bounded
variation and if for any e>0,L%_, exp(—ema},)
< o0 and L%, exp(—enb?) < oo, then 6° con-
verges to o> with probability one as v — 0.

(B) The paired sample case. Let (X, Y;),...,
(X,, Y,) denote a random sample from a bivariate
distribution with pdf h. Assume that F(f) is the
marginal distributions (pdf) of X and that G(g)
in the marginal distribution (pdf) of Y. On the
basis of the above sample we want to test H,
versus H, as specified above.

Again, we base our test on the statistic A( F, G)
with m=n and a, =5, The following results
establish the asymptotic behavior of A in this
case.

Theorem 2.3. Under the conditions of Theorem 2.1,
as n— o, Vn(A(F, G)— A(F, G)) is asymptoti-
cally normal with mean O and variance L* given by

$2=4[ff"‘(x) ax=| [r(x) dx)z
+fg3(x) dx— (fgz(x) dx)2
—fof(x)g(y)h(x. y)dxdy

([ ax)(fareor o)
= o2 =8 [ [£(x)e(»)h(x, y) dx dy

—arsc}. (2.8)

Thus to proceed with our procedure we need to
consistently estimate ¥2. This is done as follows:
Consider

2= 8{ [ [F(x)8(x) AH, (x, ) = 8,85,
(29)
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Note that
fff(x)g“(y) dH,(x, y)

=(nsas)"):,.z,,-sz(%&)"(ﬁa:_n)‘
(2.10)

Theorem 2.4. If na> = o0 as n— oo and if fand g
are in L*(— o, 00), then 32 — ¥? in probability as
n— oo.

Thus again we can reject H, if VnA(F, G)/%
> z,. Also, as in Proposition 2.1, it is possible to
establish the strong consistency of $? under
slightly more general conditions than those of
Theorem 2.4. Precisely, under conditions of Pro-
position 2.1, 32— ¥? with probability one as
n— oo.

3. Some remarks

(i) In the statements of the above theorems
we employed the customary conditions used to
obtain the consistency and asymptotic normality
of the so-called kernel method density estimators.
For details and literature review, see the books by
Prakasa Rao (1983) and Silverman (1986). As
pointed out by many authors, the choice of the
kernel k is not very crucial but the choice of the
window is a serious problem that has been addres-
sed in the literature extensively. The optimal (in
the sense of minimizing mean square error or
integrated mean square error) choice of the window
depends on the unknown pdf f or g. Thus other
methods have been suggested. Some are ad hoc
(see Scott and Factor (1981) for details and refer-
ences) while others are based on resampling tech-
niques, e.g. cross validation (see Marron (1987)
and references therein).

(ii) A different method for estimating 8, (and
then A(F, G)) is possible based on orthogonal
series expansion of f(x). Since f is in L*(— o0, )
then f(x)= LX700;9:(x), where 6, =
[f(x)$;(x) dx, and {¢;}is an orthonormal basis,

182
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j=0,1,2, ..
mated by

= ¥ /(X)

i=1

.. Thus 6 can be unbiasedly esti-

and f(x) by

~ q(m)

f(x)= XL boi(x).
Jj=0

where g(m) is an integervalued function such that
g(m) — oo as n — oo. Hence, an estimate of 85 is

g(m) m

§e=m™' L L he(X)

Jj=0 i=1

m m q(m)

=m?Yy X Z¢j(Xf)¢j(Xi')‘

i=1i*=1 j=0

(3.1)

Define §; similarly, thereby giving an estimate’
A(F, G)= 08— 0 for A(F, G). :

-~ -

Note that §,= [f(x) dF,(x). Thus 5, resem- |

bles 8¢ after we replace f(x) by f(x). Hence it is¢
possible to discuss the large sample properties off
5, and A(F, G) but we shall not present the
details here. One observation is in order here; the
estimate f(x) is a density function while f(x) is
not. In fact f(x) may assume negative values, thus
making the estimate of [f*(x)dx awkward. his
is why we .opted to work with 8.

(iii) Bartoszewicz (1986) initiated a test for testz
ing H, against H, in the one sample case (assum;
ing that G is completely known). However, he has
not studied the properties of his test in detail. .
competitor to his test would be :

AO(F’ E)) = (SF_ BFO)‘/;/‘%;

where 62 = 4{ [f*(x) dF,(x)— (8:)?). Rejed
dis| t
Hy. F = F, (completely known) in favor of Hj:

disp i - ]
< F,,if ymA,/é,> z,. Thus our procedure offers

a complete solution to this problem. i

(i;? Bagai and Kochar (1986) have shown tha
if F <pG and For G is IFR, then rg(x) < re(X
Kochar (1979, 1981) and Bagai and Kochar (1986
have proposed tests for testing the null, hypothest
H{: rg(x) =rg(x) against the alternative H
rs(x) < re(x) for every x.
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Pr oof of Theorem 2.1. It follows from the proof of
fheorem 2.2 of Ahmad (1976) that

b (8, EB:) = ()™ 5 Yo+ (1),

ii=1

= qm( X)) — Eq,y(X;) with

Ef(x) = a;]f:ok( . _mu )f(u) du.

a

imilarly,

(8- E85) = ()™ X Way+0,(1)

Jj=1
bhere 1, = p,(Y,) — Ep,(¥,)) with
()= E2() =67 [ k(258 aw.

But again as in Ahmad (1976, Theorem 2.2),

|V, + W, 13 V0 [V (Vi + W) =0

as v — 0.

Then Layaponouff’s central limit theorem applies
with

V(Vm,-+ W,,J-) —0? asv— 0.

Finally it follows from Theorem 2.3 of Ahmad
1(1976) that Vo (E8;—8;) =0 and Vo (E8;— &)
-0 as v — o0. The proof is complete.

' Proof of Theorem 2.2. Clearly, cf. Ahmad (1976)
and Bhattacharyya and Roussas (1969), 3F con-
verges in probability to 8 and so does 8;. Thus it

' suffices to show that [f?(x) d F,,(x) converges in
probability to [f*(x) dx as m — co. But

| [/(x) dEL(X) = [£2(x) aF(x)|
< [{*(x) = [Ef(x)]*} dE,(x) |
+| [(Ef(x))[dE, (x) - dF(x)] |

+1 [[ERx) - 12(x)] aF ()

= Ilm + Ilm +. IBm’ say.

STATISTICS & PROBABILITY LETTERS

December 1988

Now,

I, < sup | f(x) = Ef(x)]|

x{ [£(x) aE,(x) + [[Ef()] 4, (x)).

By Theorem 4.1 of Parzen (1962), sup, | f(x)-
Ef(x)| converges to 0 in probability as m — o0
provided that ma?2 — oo as m — 0. Also

8p= [f(x) dF,(x) > [£3(x) dx =5

in probability as m — co. Finally by the weak law
of large numbers

JUEA)] 4E,(x) =5

in probability as m — co. Hence I,,, = 0 in prob-
ability as m — co. Writing ¢,(x)= Ef(x) and
applying the weak law of large numbers we get

L= [$(x) dF,(x) = [¢(x) dF(x)]| =0

in probability as m — oo. Finally, since Ef(x) -
f(x) (cf. Parzen (1962)) as m — oo for each con-
tinuity point x of f, then by the Lebesegue
Dominated Convergence Theorem, I5,, =0 as m
— 00. )

Proof of Proposition 2.1. Recall the definition of
62%. Note that by Theorem 2.3 of Ahmad (1976),
8 — 8 with probability one as m — oo, under the
stated conditions. We need only show that
[f*(x) dF,(x) = [f(x) dx with probability one
as m — oo. But from the proof of Theorem 2.2 we
need only show that [;,, =0 and I,, — 0 with
probability one. But I,, — 0 with probability one
by the strong law of large numbers. Also since
sup, | f(x) — Ef(x)| = 0 with probability one as
m — oo by Nadaraya (1965) and 5F—> 8, with
probability one as n — oo by Ahmad (1976), 1,
— (0 with probability one as m — co.

Proof of Theorem 2.3. From Theorem 2.1, it is
enough to show that Vn (A(F, G) — EA(F, G)) is
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asymptotically normal with mean 0 and variance
2. Again,

Vn (4 - EA)
= (\/;;)qj{ i Veim i

i=1 j=1

W} +o,(1),

where V,, and W,, are as in Theorem 2.1. Now,

n WL Vo= T W) = V (Vi = W)
= V(P:n) * V("/nl)
=2cov(V,1, Wy).

But we have already seen that

li:n V(V,)= ff3(x) dx — (ffz(x) d.ac)2

and

lim V(W,,) = fg3(x) dx— (fgz(x) dx)z

Also it is not difficult to see that

lim cov(¥,y, W,1)
= [ [£(x)g(»)h(x, ) dxdy
= [£3(x) dx [g*(y) dy.

For, note that

cor(V,1, W,,) = Eq,(X,) p,(Y})
—Eq,(X)Ep,(Y,),
and

Eq,(X,)p,(1})

= [ [a.(x)p.(»)h(x, y) dx dy
= [ [f(x)g(»)h(x, y) dx dy

as n — oo. Now using Layaponouff’s central limit
theorem we have

E\Vpy+ Wy 1>/Vn [V(Va + W) >0

as n— oo

This completes the proof.
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Proof of Theorem 2.4. From Theorem 2.2 and the
representation of ¥? it is enough to show that
[[f(x)§(y)dH,(x, y) converges in probability’

to [[f(x)g(y)h(x, y)dx dy as n— oo but,
as n — oo we easily see that -

{[JEAX)Ef(y) dH(x, y) - [[f(x)g(y) dH(x|

as n — oo, under the stated conditions. Next, look
at

[ [7(x)&(») dH,(x, »)

- [ [IEf G LB ()] am(x, )

- [E ]800} a5, )
| 1B 80
- (Bl [E6()]) at,(x, )|
+Uf[Ef(x)][Eg(y)]

X [dH, (x, y) - dH(x, y)]{
=Ji.+h,+8,, say.

Jin < sup, | f(x) = Ef(x) | [§(») dG,(») =0 in’
probability as n — oo, since sup, | f(x) — Ef(x)|
— 0 in probability by Parzen (1962) and
/8(y) dG,(y) = 8; = &; in probability as n — oo’
Secondly, by the weak law of large numbers w1th
$u(x, y) = Ef(x)- E§(y),

Jé.(x, ») dH,(x, n)

- [ otz ») ati(x )| =0
as n— oo,
Finally,

Ln< sup | £(y) = E§(») | [(Ef(x)) dF,(x)
Y

-0
in probability as n — co.
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