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Abstract

Let Xi : n denote the ith-order statistic of a random sample of size n from a continuous distribution with distribution
function F . It is shown that if F is a decreasing failure rate (DFR) distribution, then Xi : n is less dispersed than Xj : m for
i6j and n− i¿m− j. Let Yj : m denote the jth-order statistic of a random sample of size m from a continuous distribution
G. We prove that if F is less dispersed than G and either F or G is DFR, then Xi : n is less dispersed than Yj : m for i6j
and n− i¿m− j. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

Order statistics play a central role in statistics and a lot of work has been done in the literature on di�erent
aspects of this problem. For a glimpse of this, see the two volumes of papers on this topic by Balakrishnan
and Rao (1998a,b).
Throughout this paper we shall be assuming that all random variables under consideration are nonnegative

and their distribution functions are strictly increasing on (0;∞) or on some interval of (0;∞). We shall use
“increasing” (“decreasing”) to mean “nondecreasing” (“nonincreasing”).
One of the basic criteria for comparing variability in probability distributions is that of dispersive ordering.

Let X and Y be two random variables with distribution functions F and G, respectively. Let F−1 and G−1

be their right continuous inverses (quantile functions). We say that X is less dispersed than Y (X
disp
4Y ) if

F−1(�) − F−1(�)6G−1(�) − G−1(�), for all 06�6�61. This means that the di�erence between any two
quantiles of F is smaller than the di�erence between the corresponding quantiles of G. A consequence of

X
disp
4Y is that |X1 − X2| is stochastically smaller than |Y1 − Y2| and which in turn implies var(X )6var(Y ) as

well as E[|X1 − X2|]6E[|Y1 − Y2|], where X1; X2(Y1; Y2) are two independent copies of X (Y ). For details,
see Section 2:B of Shaked and Shanthikumar (1994).

∗ Corresponding author.

0167-7152/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved
PII: S0167 -7152(99)00110 -8



258 B.-E. Khaledi, S. Kochar / Statistics & Probability Letters 46 (2000) 257–261

Let F and G denote the survival functions and rF and rG denote the hazard rate functions of random
variables X and Y , respectively. We say that X is smaller than Y in the hazard rate ordering (denoted by
X6hrY ) if G(x)=F(x) is nondecreasing in x, which is equivalent to rF(x)¿rG(x) for all x, if X and Y are
continuous random variables. Bagai and Kochar (1986) noted a connection between hazard rate ordering and
dispersive ordering. They observed that if X6hrY and either F or G is DFR (decreasing failure rate), then

X
disp
4Y .
Let X1; : : : ; Xn be a random sample of size n from a continuous distribution with distribution function F

and let Xi : n denote the ith-order statistic of this random sample. David and Groeneveld (1982) proved that if
F is a DFR distribution, then var(Xi : n)6var(Xj : n) for i6j. Kochar (1996) strengthened this result to prove

that under the same condition, Xi : n

disp
4Xj : n for i6j.

In this paper we further extend these results to compare the variabilities of order statistics based on samples
of possibly di�erent sizes. We consider both, the one-sample as well as the two-sample problems. It is proved

in the next section that if F is DFR, then Xi : n

disp
4Xj : m for i6j and n− i¿m−j: Let Yj : m denote the jth-order

statistic of a random sample of size m taken from a probability distribution with continuous distribution

function G. It is proved in the next section that if X
disp
4Y and if either F or G is DFR, then Xi : n

disp
4Yj : m for

i6j and n− i¿m− j. This result also holds if, instead, we assume that X6hrY and either F or G is DFR.
We shall be using the following results to prove the main results in the next section.

Theorem 1.1 (Saunders, 1984). The random variable X satis�es X
disp
4X + Y for any random variable Y

independent of X if and only if X has a log-concave density.

Theorem 1.2 (Hickey, 1986). Let Z be a random variable independent of random variables X and Y . If

X
disp
4Y and Z has a log-concave density; then

X + Z
disp
4Y + Z

This result leads to the following corollary.

Corollary 1.1. Let X1; X2; Y1; Y2 be independent random variables with log-concave densities. Then Xi

disp
4Yi

for i = 1; 2 implies

X1 + X2
disp
4Y1 + Y2: (1.1)

Proof. Since X2 is independent of X1 and Y1 and it has a log-concave density, it follows from Theorem 1.2

that X1
disp
4Y1 implies

X1 + X2
disp
4Y1 + X2: (1.2)

Using the same argument it follows that X2
disp
4Y2 implies

Y1 + X2
disp
4Y1 + Y2: (1.3)

Combining (1.2) and (1.3), we get the required result.
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2. Main results

Boland et al. (1998) proved that if X1; : : : ; Xn is a random sample of size n from an exponential distribution,

then Xi : n

disp
4Xj : n for i6j. In the next lemma we extend this result to the case when the order statistics are

based on samples of possibly di�erent sizes.

Lemma 2.1. Let Xi : n be the ith-order statistic of a random sample of size n from an exponential distribution.
Then

Xi : n

disp
4Xj : m for i6j and n− i¿m− j: (2.1)

Proof. Suppose we have two independent random samples, X1; : : : ; Xn and X ′
1 ; : : : ; X

′
m of sizes n and m from

an exponential distribution with failure rate �. The ith-order statistic, Xi : n can be written as a convolution of
the sample spacings as

Xi : n = (Xi : n − Xi−1 : n) + · · ·+ (X2 : n − X1 : n) + X1 : n

dist=
i∑

k=1

En−i+k ; (2.2)

where for k=1; : : : ; i, En−i+k is an exponential random variable with failure rate (n−i+k)�. It is a well-known
fact that En−i+k ’s are independent. Similarly, we can express X ′

j : m as

X ′
j : m

dist=
j∑

k=1

E′
m−j+k ; (2.3)

where again for k = 1; : : : ; j, E′
m−j+k is an exponential random variable with failure rate (m − j + k)� and

E′
m−j+k ’s are independent. It is easy to verify that En−i+1

disp
4E′

m−j+1 for n− i¿m− j:
Since the class of distributions with log-concave densities is closed under convolutions (cf. Dharmadhikari

and Joeg-dev, 1988, p. 17), it follows from the repeated applications of Corollary 1.1 that

i∑

k=1

En−i+k

disp
4

i∑

k=1

E′
m−j+k : (2.4)

Again since
∑j

k=i+1 E
′
m−j+k , being the sum of independent exponential random variables has a log-concave

density and since it is independent of
∑i

k=1 E
′
n−i+k , it follows from Theorem 1.1 that the RHS of (2.4) is

less dispersed than
∑j

k=1 E
′
m−j+k for i6j.

That is,

Xi : n
dist=

i∑

k=1

En−i+k

disp
4

j∑

k=1

E′
m−j+k

dist= X ′
j : m:

Since Xj : m and X ′
j : m are stochastically equivalent, (2.1) follows from this.

The proof of the next lemma can be found in Bartoszewicz (1987).

Lemma 2.2. Let � : R+ → R+ be a function such that �(0) = 0 and �(x)− x is increasing. Then for every
convex and strictly increasing function  : R+ → R+ the function  � −1(x)− x is increasing.
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In the next theorem we extend Lemma 2.1 to the case when F is a DFR distribution.

Theorem 2.1. Let Xi : n be the ith-order statistic of a random sample of size n from a DFR distribution F .
Then

Xi : n

disp
4Xj : m for i6j and n− i¿m− j:

Proof. The distribution function of Xj : m is Fj : m(x) = Bj : mF(x), where Bj : m is the distribution function of
the beta distribution with parameters (j; m− j + 1).
Let G denote the distribution function of a unit mean exponential random variable. Then Hj : m(x)=Bj : mG(x)

is the distribution function of the jth-order statistic in a random sample of size m from a unit mean exponential
distribution. We can express Fj : m as

Fj : m(x) = Bj : mGG−1F(x) = Hj : mG−1F(x): (2.5)

To prove the required result, we have to show that for i6j and n− i¿m− j,

F−1
j : mFi : n(x)− x is increasing in x

⇔ F−1GH−1
j : mHi : nG−1F(x)− x is increasing in x: (2.6)

By Lemma 2.1, H−1
j : mHi : n(x)−x is increasing in x for i6j and n−i¿m−j. Also the function  (x)=F−1G(x)

is strictly increasing and it is convex if F is DFR. The required result now follows from Lemma 2.2.

Remark. A consequence of Theorem 2.1 is that if we have random samples from a DFR distribution, then

Xi : n+1

disp
4Xi : n

disp
4Xi+1 : n+1 for i = 1; : : : ; n:

In the next theorem we establish dispersive ordering between order statistics when the random samples are
drawn from di�erent distributions.

Theorem 2.2. Let X1; : : : ; Xn be a random sample of size n from a continuous distribution F and let Y1; : : : ; Ym

be a random sample of size m from another continuous distribution G. If either F or G is DFR; then

X
disp
4Y ⇒ Xi : n

disp
4Yj : m for i6j and n− i¿m− j: (2.7)

Proof. Let F be a DFR distribution. The proof for the case when G is DFR is similar. By Theorem 2.1,

Xi : n

disp
4Xj : m for i6j and n−i¿m−j. Bartoszewicz (1986) proved that if X

disp
4Y then Xj : m

disp
4Yj : m. Combining

these we get the required result.

Since the property X6hrY together with the condition that either F or G is DFR implies that X
disp
4Y , we

get the following result from the above theorem.

Corollary 2.1. Let X1; : : : ; Xn be a random sample of size n from a continuous distribution F and Y1; : : : ; Ym

be a random sample of size m from another continuous distribution G. If either F or G is DFR; then

X6hrY ⇒ Xi : n

disp
4Yj : m:
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