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Abstract

Let X1: n6X2 : n6 · · ·6Xn : n denote the order statistics of a random sample of size n from a probability distribution with
distribution function F . Similarly, let Y1:m6Y2:m6 · · ·6Ym :m denote the order statistics of an independent random sample
of size m from another distribution with distribution function G. We assume that F and G are absolutely continuous with
common support (0;∞). The corresponding normalized spacings are de�ned by Ui : n ≡ (n − i + 1)(Xi : n − Xi−1: n) and
Vj :m ≡ (m − j + 1)(Yj :m − Yj−1:m), for i = 1; : : : ; n and j = 1; : : : ; m, where X0 : n = Y0 : n ≡ 0: It is proved that if X is
smaller than Y in the hazard rate order sense and if either F or G is a decreasing failure rate (DFR) distribution, then
Ui : n is stochastically smaller than Vj :m for i6j and n− i¿m− j. If instead, we assume that X is smaller than Y in the
likelihood ratio order and if either F or G is DFR, then this result can be strengthened from stochastic ordering to hazard
rate ordering. Finally, under a stronger assumption on the shapes of the distributions that either F or G has log-convex
density, it is proved that X being smaller than Y in the likelihood ratio order implies that Ui : n is smaller than Vj :m in
the sense of likelihood ratio ordering for i6j and n− i = m− j. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

In this note we study the connections between various types of stochastic orderings between two probability
distributions and their normalized spacings when random samples of possibly di�erent sizes are drawn from
them. There are several notions of stochastic orderings of varying degree of strength and they have been
discussed in detail in Shaked and Shanthikumar (1994). We briey review some of these here.
Let X and Y be two random variables with distribution functions F and G, survival functions F = 1 − F

and G = 1−G; and density functions f and g, respectively. We say that X is stochastically smaller than Y
(denoted by X6st Y ) if F(x)6G(x) for all x. This is equivalent to E(�(X ))6E(�(Y )) for all nondecreasing
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functions � : R → R for which the expectations exist. X is said to be smaller than Y in the sense of hazard
rate ordering (denoted by X6hr Y ) if G(x)=F(x) is nondecreasing in x for all x such that F(x)¿ 0. In case
F and G are absolutely continuous, this is equivalent to rG(x)6rF(x) for all x, where rF =f=F and rG=g=G
are the hazard (or failure) rates of F and G, respectively. If g(x)=f(x) is nondecreasing in x, then we say
that X is smaller than Y in the sense of likelihood ratio ordering (X 6lr Y ). We have the following chain
of implications among the above orderings,

X6lr Y ⇒ X6hr Y ⇒ X6st Y:

The above notions of stochastic dominance among univariate random variables can be extended to the
multivariate case. A random vector X =(X1; : : : ; Xn) is smaller than another random vector Y =(Y1; : : : ; Yn) in

the multivariate stochastic order (and written as X
st
4Y) if E[�(X)]6E[�(Y)]; for all nondecreasing functions

� for which the expectations exist.
We shall be assuming throughout this paper that all distributions under study are absolutely continuous

with common support (0;∞). Let X1:n6X2 :n6 · · ·6Xn :n denote the order statistics of a random sample
X1; X2; : : : ; Xn from a life distribution with distribution function F . Similarly, let Y1 :m6Y2:m6 · · ·6Ym :m de-
note the order statistics of an independent random sample Y1; Y2; : : : ; Ym from another life distribution with
distribution function G. The corresponding normalized spacings are de�ned by Ui :n ≡ (n − i + 1)(Xi :n −
Xi−1:n); i = 1; 2; : : : ; n and Vj :m ≡ (m − j + 1)(Yj :m − Yj−1 :m); j = 1; 2 : : : ; m. Here X0 :n = Y0 :m ≡ 0. Under
certain shape restrictions and stochastic orderings between F and G, Kochar (1998) considered the problem
of stochastically comparing the spacings of two samples in case n = m. In particular, it was shown that if

X 6hr Y and if either X or Y has decreasing failure rate (DFR) distribution, then U
st
4V . Comparatively

stronger results on spacings are obtained if one assumes that F and G are likelihood ratio ordered and at least
one of these distributions has log-convex density.
In this note we extend the above results to the case when the sample sizes are not necessarily equal. We

prove in Section 2 that if X6hr Y and if either X or Y has DFR distribution, then Ui :n is stochastically
smaller than Vj :m for i6j and n− i¿m− j. If instead, we assume that X is smaller than Y in the likelihood
ratio order and if either F or G is DFR, then this result can be strengthened from stochastic ordering to
hazard rate ordering. Finally, if we make a stronger assumption on the shapes of the distributions that either
X or Y has log-convex density and X is smaller than Y in the likelihood ratio order, then it is proved that
Ui :n is smaller than Vj :m in the sense of likelihood ratio ordering for i6j and n− i = m− j .

2. Main results

We shall be using the following lemma for proving the various results in this section.

Lemma 2.1. (a) X6st Y ⇒ Xi :n6st Yj :m for i6j and n− i¿m− j.

(b) Let Uu;i :n
dist≡{(n− i+1)(Xi :n−Xi−1:n)|Xi−1:n=u} and Vu;j :m

dist≡{(m− j+1)(Yj :m−Yj−1 :m)|Yj−1 :m=u}.
Let either F or G be DFR. Then

X 6hr Y ⇒ Uu;i :n6hr Vu;j :m

for n− i¿m− j and u¿0.

Proof. (a) It is easy to prove (see also Raqab and Amin, 1996) that for i6j and n− i¿m− j,

Xi :n6lr Xj :m: (2.1)

It is well known that X6st Y implies Xj :m6st Yj :m. The required result follows from this and (2.1).
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(b) The survival function of Uu;i :n at x is

Fu; i :n(x) =
[
F((x=(n− i + 1)) + u)

F(u)

](n−i+1)

;

and that of Vu;j :m is

Gu;j :m(x) =
[
G((x=m− j + 1)) + u)

G(u)

](m−j+1)

:

We show that for n − i¿m − j, the hazard rate of Uu;i :n is uniformly greater than that of Vu;j :m for all
u¿0. Since F is DFR and rF(x)¿rG(x), we have for n− i¿m− j and u¿0,

rUu; i : n(x) = rF

(
x

n− i + 1
+ u

)

¿ rF

(
x

m− j + 1
+ u

)

¿ rG

(
x

m− j + 1
+ u

)

= rVu; j :m(x)

for all x¿0. That is,

Uu;i :n6hr Vu;j :m for u¿0:

Theorem 2.1. Let X6hr Y and either F or G be DFR; then

Ui :n6st Vj :m for i6j and n− i¿m− j: (2.2)

Proof. Let us assume that F is DFR. As shown in Kochar and Kirmani (1995), the survival function of Vj :m

(denoted by G
∗
j :m(x)) is

G
∗
j :m(x) =

∫ ∞

0

[
G((x=m− j + 1)) + u)

G(u)

](m−j+1)

gj−1 :m(u) du; (2.3)

where gj−1 :m is the density of Yj−1 :m. Since hazard rate ordering implies stochastic ordering, Lemma 2.1(b)
implies that for n− i¿m− j,

G
∗
j :m(x)¿

∫ ∞

0

[
F((x=n− i + 1)) + u)

F(u)

](n−i+1)

gj−1 :m(u) du; (2.4)

for all x¿0.
Now the function[

F((x=n− i + 1)) + u)
F(u)

](n−i+1)

is nondecreasing in u since F is assumed to be DFR. Also by Lemma 2.1(a), Xi :n6st Yj :m for i6j and
n− i¿m− j. Using these results, we get

G
∗
j :m(x)¿

∫ ∞

0

[
F((x=n− i + 1)) + u)

F(u)

](n−i+1)

fi−1:n(u) du for x¿0: (2.5)



164 B.-E. Khaledi, S. Kochar / Statistics & Probability Letters 44 (1999) 161–166

The quantity on the RHS of the inequality (2.5) is the survival function of Ui :n. This proves the required
result.

In the next theorem we assume likelihood ratio ordering between X and Y instead of hazard rate ordering
and establish that under the condition that either F or G is DFR, normalized spacings from the two samples
are hazard rate ordered for the above choices of i and j. To prove this result we shall need the following
lemma of Kochar and Kirmani (1995).

Lemma 2.2. Let  1(x; y) and  2(x; y) be positive real-valued functions such that
(i) for y16y2;

 2(x; y2)
 2(x; y1)

is nondecreasing in x;

(ii) for y16y2;

 1(x; y2)
 2(x; y1)

is nondecreasing in x;

(iii) for each �xed x;

 1(x; y)
 2(x; y)

is nondecreasing in y:

Then for functions  1 and  2 satisfying the above conditions; Z16lr Z2 implies

E[ 1(x; Z2)]
E[ 2(x; Z1)]

is nondecreasing in x; (2.6)

provided that the expectations exist.

Theorem 2.2. Let X6lr Y and let either X or Y be DFR. Then

Ui :n6hr Vj :m for i6j and n− i¿m− j:

Proof. Assume that F is DFR. We have to show that for i6j and n− i¿m− j; G
∗
j :m(x)=F

∗
i :n(x) is nonde-

creasing in x. As in Kochar and Kirmani (1995), this ratio can be expressed as

C(j : m)
∫∞
0 [G(x=(m− j + 1) + u)]m−j+1 dGj−1(u)

C(i : n)
∫∞
0 [F(x=(n− i + 1) + u)]n−i+1 dFi−1(u)

; (2.7)

which can be further written as
E[ 1(x=(m− j + 1); Yj−1:j−1)]
E[ 2(x=(n− i + 1); Xi−1:i−1)]

; (2.8)

where

 1(x; y) = C(j : m)G(x=(m− j + 1) + y)]m−j+1;

 2(x; y) = C(i : n)F(x=(n− i + 1) + y)]n−i+1

and

C(i : n) =
n!

(i − 1)! (n− i + 1)!
: (2.9)

It is shown below that the functions  1 and  2 satisfy all the conditions of Lemma 2.2.
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(a) The ratio

 2(x; y2)
 2(x; y1)

=
F(x=(n− i + 1) + y2)]n−i+1

F(x=(n− i + 1) + y1)]n−i+1

is nondecreasing in x for y16y2, since F is DFR. Thus the condition (i) of Lemma 2.2 is satis�ed.
(b) We show that for y16y2,

 1(x; y2)
 2(x; y1)

=
C(j : m)G(x=(m− j + 1) + y2)]m−j+1

C(i : n)F(x=(n− i + 1) + y1)]n−i+1

is nondecreasing in x. Now for n− i¿m− j,

d log
dx

{
 1(x; y2)
 2(x; y1)

}
= rF

(
x

n− i + 1
+ y1

)
− rG

(
x

m− j + 1
+ y2

)

¿ rF

(
x

m− j + 1
+ y1

)
− rG

(
x

m− j + 1
+ y2

)

(since F is DFR and n− i + 1¿m− j + 1)

¿ 0;

since X 6hr Y .
Thus the condition (ii) of Lemma 2.2 is satis�ed.
(c) One can show on the same lines that under the stated assumptions, condition (iii) of the above lemma

is satis�ed for n− i¿m− j.
It is easy to verify that X6lr Y implies

Xi−1 : i−16lr Yj−1 : j−1 for i6j:

The required result now follows from Lemma 2.2.

By taking F = G in the above theorem, we get the following result on spacings from a DFR distribution.

Corollary 2.1. In case of random samples from a DFR distribution

Ui :n+16hr Ui :n6hr Ui+1:n+1 for i = 1; : : : ; n:

This corollary implies that the successive normalized spacings of a random sample from a DFR distribution
are increasing according to hazard rate ordering, a result proved earlier by Kochar and Kirmani (1995).
One of the basic criteria for comparing variability in two probability distributions is that of dispersive

ordering.

De�nition 2.1. X is less dispersed than Y (X6dispY ) if

F−1(v)− F−1(u)6G−1(v)− G−1(u); ∀0¡u6v¡ 1: (2.10)

This means that the di�erence between any two quantiles of F is smaller than the di�erence between the
corresponding quantiles of G. A consequence of X6disp Y is that |X1 − X2|6st |Y1 − Y2| and which in turn
implies var(X )6var(Y ) as well as E[|X1−X2|]6E[|Y1−Y2|], where X1; X2 (Y1; Y2) are two independent copies
of X (Y ). For details see Shaked and Shanthikumar (1994, Section 2.B).
The normalized spacings from a DFR distribution have DFR distributions (cf. Barlow and Proschan, 1966).

Bagai and Kochar (1986) proved that if X6hr Y and either F or G is DFR, then X6dispY . Combining these
results with the above theorem we get the following corollaries.
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Corollary 2.2. Let X6lr Y and either F or G be DFR; then

Ui :n6disp Vj :m for i6j and n− i¿m− j:

Corollary 2.3. In case of random samples from a DFR distribution

Ui :n+16dispUi :n6dispUi+1:n+1 for i = 1; : : : ; n;

and as a consequence

var(Ui :n+1)6var(Ui :n)6var(Ui+1:n+1) for i = 1; : : : ; n:

Kochar (1998) proved that if X6lr Y and either F or G has a log-convex density, then Ui :n6lr Vi :n for
16i6n. The natural question is whether this result can be extended to the case when the sample sizes are
not equal. However, we have only a partial result in this case as stated below.

Theorem 2.3. Let X6lr Y and let either F or G have a log-convex density; then Ui :n6lr Vj :m for i6j
provided n− i = m− j.

Proof. We have to prove that under the given conditions

g∗j :m(x)
f∗

i :n(x)
=

C(j; m)E{g(x=(m− j + 1) + Yj−1 : j−1)G
m−j
(x=(m− j + 1) + Yj−1 : j−1)}

C(i; n)E{f(x=(n− i + 1) + Xi−1 :i−1)F
n−i
(x=(n− i + 1) + Xi−1 : i−1)}

; (2.11)

is nondecreasing in x. Here C(i : n) is as de�ned in (2.9). De�ne

 1(x; y) = g(x=(m− j + 1) + y)G
m−j
(x=(m− j + 1) + y)

and

 2(x; y) = f(x=(n− i + 1) + y)F
n−i
(x=(n− i + 1) + y):

Replacing the DFR property by the log-convexity of f and using the same kind of arguments as in the
proof of Theorem 2.2, we get the required result.
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