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Abstract

Let X1 : n6X2 : n6 · · ·6Xn : n denote the order statistics of a random sample X1; X2; : : : ; Xn from a probability distribution
with distribution function F . Similarly, let Y1 : n6Y2 : n6 · · ·6Yn : n denote the order statistics of an independent random
sample Y1; Y2; : : : ; Yn from G. The corresponding spacings are de�ned by Ui : n ≡ Xi : n − Xi−1 : n and Vi : n ≡ Yi : n − Yi−1 : n,
for i = 1; 2; : : : ; n, where X0 : n = Y0 : n ≡ 0: It is proved that if X is smaller than Y in the hazard rate order sense and
if either F or G is a DFR (decreasing failure rate) distribution, then the vector of Ui : n’s is stochastically smaller than
the vector of Vi : n’s. If instead, we assume that X is smaller than Y in the likelihood ratio order and if either F or G
is DFR, then Ui : n is smaller than Vi : n in the hazard rate sense for 16i6n. Finally, if we make a stronger assumption
on the shapes of the distributions that either X or Y has log-convex density, then the random vector of Ui : n’s is smaller
than the corresponding random vector of Vi : n’s in the sense of multivariate likelihood ratio ordering. c© 1999 Elsevier
Science B.V. All rights reserved
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1. Introduction

In the case of nonnegative (skewed) random variables, the notions of stochastic orderings and variability
orderings are intimately connected. For example, two exponential distributions with di�erent hazard rates are
ordered stochastically as well as according to variability ordering. There are several notions of stochastic
ordering as well as of variability ordering of di�erent degrees of strength. The di�erences in the variabili-
ties in probability distributions are re
ected in their samples in the form of di�erences in the lengths of the
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corresponding sample spacings when random samples of the same size are drawn from them. If one probability
distribution is more dispersed than the other then the sample spacings for that distribution will be compara-
tively larger in some stochastic sense. We shall make this statement more precise later. Note that almost all
well-known measures of dispersion, including sample range, sample variance and Gini’s mean di�erence are
functions of sample spacings.
Spacings are of great importance in statistics and life testing. A large number of goodness-of-�t tests are

based on functions of sample spacings. In the life testing context, imagine n items put on test. Then the
spacings represent times between consecutive failures.
In this note we obtain connections between various types of stochastic orderings between two probability

distributions and their corresponding sample spacings when random samples of the same size are drawn from
them. First we review some well-known notions of stochastic orders. These can be found at one place in the
book by Shaked and Shanthikumar (1994).
Let X and Y be two random variables with distribution functions F and G; and survival functions F and

G, respectively. Let F−1 and G−1 be the right continuous inverses of F and G, de�ned by F−1(u) = sup{x :
F(x)6u} and G−1(u)= sup{x : G(x)6u}; u ∈ [0; 1]. We shall denote by f and g the densities of X and Y ,
respectively. Throughout this paper the term increasing is used for monotone nondecreasing and decreasing
for monotone nonincreasing.

De�nition 1.1. X is said to be stochastically smaller than Y (denoted by X6stY ) if

F(x)6G(x) for all x: (1.1)

It is well known that Eq. (1.1) is equivalent to

E[�(X )]6E[�(Y )] for all increasing functions � : R → R; (1.2)

for which the expectations exist.

De�nition 1.2. X is said to be smaller than Y in the sense of hazard rate ordering (denoted by X6hrY ) if

F(x)
G(x)

is decreasing in x: (1.3)

In the continuous case this is equivalent to

rG(x)6rF(x) for all x; (1.4)

where rF = f= F and rG = g= G are the hazard (or failure) rates of F and G, respectively.

De�nition 1.3. X is said to be smaller than Y in the sense of likelihood ratio ordering (denoted by X6lrY )
if

f(x)
g(x)

is decreasing in x: (1.5)

We have the following chain of implications among these partial orderings of distributions:

X6lrY ⇒ X6hrY ⇒ X6stY:

The above notions of stochastic dominance among univariate random variables can be extended to the multi-
variate case.
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De�nition 1.4. A random vector X = (X1; : : : ; Xn) is smaller than another random vector Y = (Y1; : : : ; Yn) in

the multivariate stochastic order (and written as X
st
4Y) if

E[�(X)]6E[�(Y)] for all increasing functions � (1.6)

for which the expectations exist.

Karlin and Rinott (1980) introduced and studied the concept of multivariate likelihood ratio ordering. Let
f and g denote the density functions of X and Y , respectively.

De�nition 1.5. A random vector X = (X1; : : : ; Xn) is smaller than another random vector Y = (Y1; : : : ; Yn) in

the multivariate likelihood ratio order (written as X
lr
4Y) if

f(x)g(y)6f(x ∧ y)g(x ∨ y) for every x and y in Rn; (1.7)

where

x ∧ y= (min(x1; y1); : : : ; min(xn; yn))

and

x ∨ y= (max(x1; y1); : : : ; max(xn; yn)):

It is known that multivariate likelihood ratio ordering implies multivariate stochastic ordering, but the converse
is not true. Also if two random vectors are ordered according to multivariate stochastic ordering or multivariate
likelihood ratio ordering, then their corresponding subsets are also ordered accordingly. It should be noted
that unless the components of random vectors are independent, component-wise stochastic (likelihood ratio)
ordering between two random vectors may not imply multivariate stochastic (likelihood ratio) ordering between
them. See Chapters 1 and 4 of Shaked and Shanthikumar (1994) for more details on various kinds of stochastic
orderings and their inter-relationships.
One of the basic criteria for comparing variability in two probability distributions is that of dispersive

ordering.

De�nition 1.6. X is less dispersed than Y (X
disp
4 Y ) if

F−1(v)− F−1(u)6G−1(v)− G−1(u); ∀0¡u6v¡ 1: (1.8)

This means that the di�erence between any two quantiles of F is smaller than the di�erence between

the corresponding quantiles of G. It is easy to see that in the continuous case, the relation X
disp
4 Y can

be equivalently expressed as rG(G−1(u))6rF(F−1(u)), for all 06u61. A consequence of X
disp
4 Y is that

|X1−X2|6st|Y1−Y2| and which in turn implies var(X )6var(Y ) as well as E[|X1−X2|]6E[|Y1−Y2|], where
X1; X2 (Y1; Y2) are two independent copies of X (Y ). For details, see Section 2.B of Shaked and Shanthikumar
(1994).
Bagai and Kochar (1986) proved the following result on connections between hazard rate ordering and

dispersive ordering under some restrictions on the shapes of the distributions.

Theorem 1.1. (a) If X6hrY and either F or G is DFR (decreasing failure rate), then X
disp
4 Y;

(b) if X
disp
4 Y and either F or G is IFR (increasing failure rate), then X6hrY .
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Let X1 : n6X2 : n6 · · ·6Xn : n denote the order statistics of a random sample X1; X2; : : : ; Xn from a distribution
with distribution function F . Similarly, let Y1 : n6Y2 : n6 · · ·6Yn : n denote the order statistics of an independent
random sample Y1; Y2; : : : ; Yn from a distribution with distribution function G. The corresponding spacings are
de�ned by Ui : n ≡ Xi : n − Xi−1 : n and Vi : n ≡ Yi : n − Yi−1 : n, for i= 1; 2; : : : ; n, where X0 : n = Y0 : n ≡ 0: We use
U and V to denote the vectors of spacings of the X -sample and the Y -sample, respectively.

Bartoszewicz (1986) in his Lemma 3(c) has shown that X
disp
4 Y ⇒ U

st
4V . This observation along with

the result contained in Theorem 1.1 (a) leads to the following theorem.

Theorem 1.2. Let X6hrY and let either F or G be DFR. Then

U
st
4V : (1.9)

Corollary 1.1. Under the conditions of Theorem 1.2
(a)

Xj : n − Xi : n6stYj : n − Yi : n for 16i¡ j6n:

In particular,

Xn : n − X1 : n6stYn : n − Y1 : n:

(b)

s2X6st s2Y ;

where s2X and s2Y are the sample variances of the two samples.
(c)

�X6st �Y

where

�X =
[(n
2

)]−1∑∑
i¡j

|Xj : n − Xi : n|

is the Gini’s mean di�erence for the X -sample. Similarly we de�ne �Y .

Proof. (a) The result follows by adding the corresponding components of the random vectors U and V from
i + 1 to j and using the above theorem.
(b) Note that the sample variance can be expressed as

s2X = [n(n− 1)]−1
∑∑

i¡j

(Xj : n − Xi : n)2

= [n(n− 1)]−1
∑∑

i¡j

(Uj : n + Uj−1 : n + · · ·+ Ui+1 : n)2

which is an increasing function of U . Since increasing functions of stochastically ordered random vectors are
stochastically ordered, the required result follows from the above theorem.
(c) The proof follows from the previous theorem and the fact that, as in part (b), the Gini’s mean di�erence

can be expressed in the form of an increasing function of the vector of spacings.

The essence of the above results is that the di�erences in the variabilities in two probability distributions
are re
ected in their samples in the form of stochastic orderings between the corresponding sample spacings.
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David and Groeneveld (1982) have used expected lengths of spacings as a measure of local variability in a
distribution. However, they have considered a one-sample problem.
We pursue this topic further in this note and show that the results of Theorem 1.2 can be strengthened

under some stronger conditions on the underlying distributions. These results might be useful in studying the
properties of estimates of measures of dispersion.

2. Main results

In the next theorem, we assume likelihood ratio ordering between X and Y and strengthen the results of
Theorem 1.2 from stochastic ordering to hazard rate ordering.

Theorem 2.1. Let X6lrY and let either F or G be DFR. Then

Ui : n6hrVi : n for 16i6n: (2.1)

To prove this result we shall need the following lemma from Kochar and Kirmani (1995):

Lemma 2.1. Let  1(x; y) and  2(x; y) be positive real-valued functions such that
(i) for y16y2,

 2(x; y2)
 2(x; y1)

is nondecreasing in x;

(ii) for y16y2,

 1(x; y2)
 2(x; y1)

is nondecreasing in x;

(iii) for each �xed x,

 1(x; y)
 2(x; y)

is nondecreasing in y:

Then for functions  1 and  2 satisfying the above conditions, Z16lrZ2 implies

E[ 1(x; Z2)]
E[ 2(x; Z1)]

is increasing in x; (2.2)

provided that the expectations exist.

Proof of Theorem 2.1. We shall prove Eq. (2.1) assuming that F is DFR. As shown in Kochar and Kirmani
(1995), the survival function of Vi : n is

HG : i(x) =C(i : n)
∫ ∞

0
[G(x + u)]n−i+1 dGi−1(u)

=C(i : n)E[ 1(x; Yi−1 : i−1)]; (2.3)

where,

C(i : n) =
n!

(i − 1)!(n− i + 1)!
;

 1(x; y) = G
n−i+1

(x + y) and Yi−1 : i−1 is the maximum of (i − 1) i.i.d. Yi’s.



350 S.C. Kochar / Statistics & Probability Letters 42 (1999) 345–352

Similarly, the survival function of Ui : n is

HF : i(x) = C(i : n)E[ 2(x; Xi−1 : i−1)]; (2.4)

where,  2(x; y) = F
n−i+1

(x + y) and Xi−1 : i−1 is the maximum of (i − 1) i.i.d. Xi’s.
We have to prove that under the given conditions,

HG : i(x)
HF : i(x)

=
E[ 1(x; Yi−1 : i−1)]
E[ 1(x; Xi−1 : i−1)]

is increasing in x: (2.5)

It is easy to see that X6lrY implies that Xj : j6lrYj : j for j = 1; 2; : : : ; n: By identifying Xi−1 : i−1 with Z1
and Yi−1 : i−1 with Z2, we notice that the required result will follow if conditions (i), (ii) and (iii) of the
previous lemma are satis�ed.
Let us verify them one by one.
Condition (i) is satis�ed since

 2(x; y2)
 2(x; y1)

=
[
F(x + y2)
F(x + y1)

]n−i+1

is increasing in x for y16y2 as F is assumed to be DFR.
Let us now verify condition (ii).

 1(x; y2)
 2(x; y1)

=
[
G(x + y2)
F(x + y1)

]n−i+1

will be increasing in x for y16y2 if and only if

log
[
 1(x; y2)
 2(x; y1)

]
= (n− i + 1)[logG(x + y2)− logF(x + y1)]

is increasing in x for y16y2. Di�erentiating both sides with respect to x, we see that this will be true if and
only if

(n− i + 1)[rF(x + y1)− rG(x + y2)]¿0 for all x and for y16y2: (2.6)

Now Eq. (2.6) is true since

rG(x + y2)6rF(x + y2)6rF(x + y1);

for y16y2 as rG6rF and F is DFR.
By using the same kind of arguments as above, it can be shown that for �xed x,

 1(x; y)
 2(x; y)

=
[
G(x + y)
F(x + y)

]n−i+1

is increasing in y.
Hence the result.

It is known that the spacings of a random sample from a DFR distribution are DFR (cf. Barlow and
Proschan, 1966). Using this result in conjunction with Theorem 1.1, we get the following corollary.

Corollary 2.1. Under the conditions of Theorem 2.1

Ui : n

disp
4 Vi : n for i = 1; 2; : : : ; n:
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In the next theorem we assume instead that either F or G has log-convex density, a condition stronger than
DFR property, and establish multivariate likelihood ratio ordering between the vectors of spacings U and V .
We shall need the concept of supermodular functions as de�ned below.

De�nition 2.1. A real function � on Rn is called supermodular if

�(x) + �(y)6�(x ∨ y) + �(x ∧ y) for all x; y ∈ Rn:

It is known that a function � is supermodular if and only if all its second derivatives are nonnegative (cf.
Shaked and Shanthikumar, 1997).

Theorem 2.2. Let X1; : : : ; Xn be a random sample from F and let Y1; : : : ; Yn be an independent random sample
from G. Let X6lrY and let either F or G have log-convex density. Then

U
lr
4V : (2.7)

Proof. Let us assume that f is log-convex. The proof is similar for the case when g is log-convex. As in
Kochar and Kirmani (1995), the joint density of U = (U1 : n; : : : ; Un : n) is

hF(u1; : : : ; un) = n!
n∏

j=1

f

( j∑
i=1

ui

)
; ui¿0; i = 1; : : : ; n;

and that of V = (V1 : n; : : : ; Vn : n) is

hG(v1; : : : ; vn) = n!
n∏

j=1

g

( j∑
i=1

vi

)
; vi¿0; i = 1; : : : ; n:

To prove Eq. (2.7), we have to show that under the given conditions,

hF(u)hG(C)6hF(u ∧ C)hG(u ∨ C) for all u; C ∈ Rn: (2.8)

Since under X6lrY , g=f is nondecreasing, it follows that

hG(u ∨ C)
hF(u ∨ C)¿

hG(C)
hF(C)

for all u; C ∈ Rn;

which in turn implies that

hG(u ∨ C)hF(u ∧ C)¿hF(u ∨ C)hF(u ∧ C)hG(C)
hF(C)

; (2.9)

for all u; C ∈ Rn.
Now Eq. (2.8) will hold if we can prove that under the assumed conditions

hF(u)hF(C)6hF(u ∧ C)hF(u ∨ C); for all u; C ∈ Rn;

or equivalently if

n∑
j=1

logf

( j∑
1=1

ui

)
+

n∑
j=1

logf

( j∑
1=1

vi

)

6
n∑

j=1

logf

( j∑
1=1

(ui ∨ vi)

)
+

n∑
j=1

logf

( j∑
1=1

(ui ∧ vi)

)
(2.10)
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for all u; C ∈ Rn. Let

 (x1; : : : ; xn) =
n∑

i=1

logf(x1 + · · ·+ xi):

It is easy to see that the function  is supermodular since f is log-convex. Hence

 (x) +  (y)6 (x ∨ y) +  (x ∧ y) (2.11)

for all x; y ∈ Rn, thus proving Eq. (2.10).
This completes the proof of the theorem.

3. Examples

Example 3.1. Let F(x) = exp[− {x+ �(x+ e−x − 1)}], �¿ 0, be the Makeham distribution with hazard rate
rF(x) = 1 + �(1 − e−x) and let G(x) = exp{−x}, be the exponential distribution with hazard rate rG(x) = 1.

Then for �¿ 0, X6hrY and Y is DFR. It follows from Theorem 1.2 that in this case X
disp
4 Y . Corollary 1.1

is now applicable and it gives convenient bounds on the moments of measures of dispersion for the X -sample
in terms of those from the exponential distribution with mean 1.

However, it can be seen that in this case X 
lr Y .

Example 3.2. Let Y be a random variable whose distribution is a mixture of two exponential distributions
with density function

�1�2=(�1 + �2)[e−�1x + e−�2x]; x¿ 0;

where �1¿ 0; �2¿ 0 are the parameters. Let X have exponential distribution with parameter �=(�1 + �2)=2.
Then it is easy to prove that X6lrY . Since Y has a log-convex density, the conditions of Theorem 2.2 are

satis�ed and as a result U
lr
4V . This result gives lower bounds on the moments of measures of dispersion

in sampling from a mixture of two exponential distributions in terms of that from an exponential distribution
with parameter �.
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