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Abstract

Let X�1 ; : : : ; X�n be independent random variables such that X�i has exponential distribution with hazard rate �i; i=1; : : : ; n.
It is shown that

∑n
i=1 X�i is more dispersed than

∑n
i=1 X�∗i if (�1; : : : ; �n) majorizes (�

∗
1 ; : : : ; �

∗
n ). c© 1999 Elsevier Science

B.V. All rights reserved

MSC: 62G30; 60E15; 62N05; 62D05

Keywords: Convolution; Dispersive ordering; Likelihood ratio ordering; Majorization

1. Introduction

The exponential distribution plays a very important role in statistics. Because of its non-aging property,
it has many nice properties and it often gives very convenient bounds on survival probabilities and other
characteristics of interest for systems with non-exponential components. Boland et al. (1994) proved that a
convolution of independent exponential random variables with unequal hazard rates is stochastically larger
with respect to the likelihood ratio ordering when the parameters of the exponential distributions are more
dispersed in the sense of majorization. We pursue this problem further in this note and obtain some dispersive
ordering results for convolutions of heterogeneous exponential random variables.
Let X and Y be two random variables with distribution functions F and G, respectively. Let F−1 and G−1

be their right continuous inverses. The distribution of the random variable X is less dispersed than that of

Y (X
disp
4 Y ) if

F−1(v)− F−1(u)6G−1(v)− G−1(u) for6u6v61:
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This means that the di�erence between any two quantiles of F is smaller than the di�erence between the

corresponding quantiles of G. A consequence of X
disp
4 Y is that |X1−X2|6st|Y1−Y2| and which in turn implies

var(X )6var(Y ) as well as E[|X1 − X2|]6E[|Y1 − Y2|], where X1; X2(Y1; Y2) are two independent copies of
X (Y ), and st represents the usual stochastic order. For details, see Section 2.B of Shaked and Shanthikumar
(1994). A related concept is that of star-ordering. X is said to be smaller than Y in the star order (denoted

by X
∗
4Y ) if G−1F(x)=x is increasing in x. It is easy to see that X

disp
4 Y ⇔ eX

∗
4 eY . It is well known that

a distribution F is IFRA (increasing failure rate average) if and only if it is star-ordered with respect to the

exponential distribution. Also X
∗
4Y implies that the Lorenz curve of F is uniformly greater than that of G

(cf. Kochar, 1989).

2. Main results

The concept of majorization of vectors will be needed in this work. For reference see Marshall and Olkin
(1979). Let {x(1)6 x(2)6 · · ·6 x(n)} denote the increasing arrangement of the components of a vector x =
(x1; x2; : : : ; xn). x is said to majorize another vector y (written as y

m
4 x) if

∑j
1=1 x(i)6

∑j
i=1 y(i); j=1; : : : ; n−1

and
∑n

i=1 x(i) =
∑n

i=1 y(i). In terms of majorization of parameter vectors, we now compare two convolutions
of exponential random variables with respect to the dispersive ordering.

Theorem 2.1. Let X�1 ; : : : ; X�n be independent exponential random variables with respective hazard rates

�1; : : : ; �n, respectively. Then �
m
¡ �∗ implies

n∑
i=1

X�i
disp
¡

n∑
i=1

X�∗i : (2.1)

Proof. By the nature of majorization, it su�ces to prove the result when (�1; �2) majorizes (�∗1 ; �
∗
2 ) and

�i = �∗i (i=3; : : : ; n): Let X1 : 26X2 : 2 (X
∗
1 : 26X

∗
2 : 2) be order statistics corresponding to X�1 ; X�2 (X

∗
�1 ; (X

∗
�2 ). It

follows from Theorem 3.7(b) of Kochar and Korwar (1996) that

X2 : 2 − X1 : 2
disp
¡ X ∗

2 : 2 − X ∗
1 : 2; (2.2)

and from Theorem 2.1 of Kochar and Korwar (1996) that X2 : 2 − X1 : 2 (X ∗
2 : 2 − X ∗

1 : 2) and X1 : 2 (X
∗
1 : 2) are

independent. Moreover, X1 : 2
dist= X ∗

1 : 2 has exponential distribution with hazard rate �1 +�2 =�
∗
1 +�

∗
2 . It follows

from (2.2) and Theorem 6 of Lewis and Thompson (1981) that

2∑
i=1

X�i = (X2 : 2 − X1 : 2) + 2X1 : 2
disp
¡(X ∗

2 : 2 − X ∗
1 : 2) + 2X

∗
1 : 2 =

2∑
i=1

X�∗i :

Repeatedly using the above result of Lewis and Thompson (1981), one obtains

2∑
i=1

X�i +
n∑
i=3

X�i
disp
¡

2∑
i=1

X�∗i +
n∑
i=3

X�i :
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Remark. Under the conditions of the above theorem, Boland et al. (1994) proved that

n∑
i=1

X�i
lr
¡

n∑
i=1

X�∗i ; (2.3)

where lr stands for the likelihood ratio ordering, which implies the usual stochastic ordering. To the best of
our knowledge we are not aware of any results on dispersive ordering of convolutions of exponential random
variables.

Theorem 2.1 can be easily extended to convolutions of Erlang distributions (gamma distributions with
integer valued shape parameters) as follows.

Corollary 2.1. Let X�1 ; : : : ; X�n be independent random variables such that X�i has Erlang distribution with

scale parameter �i and shape parameter ri for i = 1; : : : ; n. Then �
m
¡ �∗ implies

n∑
i=1

X�i
disp
¡

n∑
i=1

X�∗i :

Proof. It follows immediately from Theorem 2.1 since X�i can be expressed as a sum of ri independent
exponential random variables each with hazard rate �i; i = 1; : : : ; n.

It consequently provides a simple lower bound for the variance of
∑n

i=1 X�i ,

var

(
n∑
i=1

X�i

)
¿
∑n

i=1 r1
(�)2

;

where �=
∑n

i=1 ri�i=
∑n

i=1 ri, which is obtained by noting that �
m
¡(�; : : : ; �).

The Pareto distribution of the �rst kind with parameter �,

F(x) = 1− x−� x¿1;

is widely used as an income distribution. By exploiting the relation between dispersive ordering and star
ordering, we get the following result from Theorem 2.1.

Corollary 2.2. Let X�1 ; : : : ; X�n be independent random variables such that X�i has Pareto distribution of the

�rst kind with parameter �i; i = 1; : : : ; n. Then �
m
¡ �∗ implies

n∏
i=1

X�i
∗
¡

n∏
i=1

X�∗i :
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